Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New example: voltage clamp #408

Merged
Merged
7 changes: 6 additions & 1 deletion docs/examples_to_rst.sh
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,16 @@ rm docs/source/load_nwb.rst
rm -rf docs/source/load_nwb_files
rm docs/source/extrafeats_example.rst
rm docs/source/multiprocessing_example.rst
rm docs/source/voltage_clamp.rst
rm -rf docs/source/voltage_clamp_files

# convert
jupyter nbconvert --to rst examples/sonata-network/sonata-network.ipynb
jupyter nbconvert --to rst examples/nmc-portal/L5TTPC2.ipynb
jupyter nbconvert --to rst examples/neo/load_nwb.ipynb
jupyter nbconvert --to rst examples/extracellular/extrafeats_example.ipynb
jupyter nbconvert --to rst examples/parallel/multiprocessing_example.ipynb
jupyter nbconvert --to rst examples/voltage_clamp/voltage_clamp.ipynb

# move
mv examples/sonata-network/sonata-network.rst docs/source/
Expand All @@ -25,4 +28,6 @@ mv examples/nmc-portal/L5TTPC2_files docs/source/
mv examples/neo/load_nwb.rst docs/source/
mv examples/neo/load_nwb_files docs/source/
mv examples/extracellular/extrafeats_example.rst docs/source/
mv examples/parallel/multiprocessing_example.rst docs/source/
mv examples/parallel/multiprocessing_example.rst docs/source/
mv examples/voltage_clamp/voltage_clamp.rst docs/source/
mv examples/voltage_clamp/voltage_clamp_files docs/source/
141 changes: 132 additions & 9 deletions docs/source/eFeatures.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1710,7 +1710,7 @@ time_constant
The extraction of the time constant requires a voltage trace of a cell in a hyper- polarized state.
Starting at stim start find the beginning of the exponential decay where the first derivative of V(t) is smaller than -0.005 V/s in 5 subsequent points.
The flat subsequent to the exponential decay is defined as the point where the first derivative of the voltage trace is bigger than -0.005
and the mean of the follwowing 70 points as well.
and the mean of the follwowing 70 ms as well.
If the voltage trace between the beginning of the decay and the flat includes more than 9 points, fit an exponential decay.
Yield the time constant of that decay.

Expand Down Expand Up @@ -1802,16 +1802,19 @@ decay_time_constant_after_stim
- **Units**: ms
- **Pseudocode**: ::

time_interval = t[numpy.where(t => decay_start_after_stim &
t < decay_end_after_stim)] - t[numpy.where(t == stim_end)]
voltage_interval = abs(voltages[numpy.where(t => decay_start_after_stim &
t < decay_end_after_stim)]
- voltages[numpy.where(t == decay_start_after_stim)])
interval_indices = numpy.where(
(time >= interval_start) & (time < interval_end))
stim_start_index = get_index(time, stim_start)
interval_time = time[interval_indices] - stim_end
interval_voltage = abs(
voltage[interval_indices] -
voltage[stim_start_index])

log_voltage_interval = numpy.log(voltage_interval)
slope, _ = numpy.polyfit(time_interval, log_voltage_interval, 1)
# fit
log_interval_voltage = numpy.log(interval_voltage)
slope, _ = numpy.polyfit(interval_time, log_interval_voltage, 1)

decay_time_constant_after_stim = -1. / slope
tau = -1. / slope

multiple_decay_time_constant_after_stim
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expand Down Expand Up @@ -2085,6 +2088,126 @@ with impedance_max_freq being a setting with 50.0 as a default value.
else:
return None

activation_time_constant
~~~~~~~~~~~~~~~~~~~~~~~~

`Python efeature`_ : Time constant for an ion channel activation trace.
Fits for stim_start to trace maximum interval as A - B * exp(-t/tau).

Attention! For voltage clamp data, user should pass the current response as voltage to efel.
See voltage clamp example for more details.

- **Required features**: time, voltage, stim_start, stim_end
- **Units**: ms
- **Pseudocode**: ::

def exp_fit(t, tau, A0, A1) -> np.ndarray | float:
return A0 + A1 * np.exp(-t / tau)

# isolate stimulus interval
stim_start_idx = np.flatnonzero(time >= stim_start)[0]
stim_end_idx = np.flatnonzero(time >= stim_end)[0]
time_interval = time[stim_start_idx:stim_end_idx]
voltage_interval = voltage[stim_start_idx:stim_end_idx]

# keep trace going from stim_start to voltage max
max_idx = np.argmax(voltage_interval)
time_interval = time_interval[:max_idx + 1]
voltage_interval = voltage_interval[:max_idx + 1]

# correct time so that it starts from 0
time_interval -= time_interval[0]

# fit
popt, _ = curve_fit(
exp_fit,
time_interval,
voltage_interval,
p0=(1., voltage_interval[-1], voltage_interval[0] - voltage_interval[-1]),
bounds=(((0, -np.inf, -np.inf), (np.inf, np.inf, 0))), # positive tau, negative A1
ilkilic marked this conversation as resolved.
Show resolved Hide resolved
nan_policy="omit",
)
time_constant = np.array([abs(popt[0])])

deactivation_time_constant
~~~~~~~~~~~~~~~~~~~~~~~~~~

`Python efeature`_ : Time constant for an ion channel deactivation trace.
Fits for stim_start to stim_end as A + B * exp(-t/tau).

Attention! For voltage clamp data, user should pass the current response as voltage to efel.
See voltage clamp example for more details.

- **Required features**: time, voltage, stim_start, stim_end
- **Units**: ms
- **Pseudocode**: ::

def exp_fit(t, tau, A0, A1) -> np.ndarray | float:
return A0 + A1 * np.exp(-t / tau)

# isolate stimulus interval
interval_indices = np.where((time >= stim_start) & (time < stim_end))
time_interval = time[interval_indices]
voltage_interval = voltage[interval_indices]

# correct time so that it starts from 0
time_interval -= time_interval[0]

# fit
popt, _ = curve_fit(
exp_fit,
time_interval,
voltage_interval,
p0=(1., voltage_interval[-1], max(0, voltage_interval[0] - voltage_interval[-1])),
bounds=(((0, -np.inf, 0), np.inf)), # positive tau, positive A1
ilkilic marked this conversation as resolved.
Show resolved Hide resolved
nan_policy="omit",
)
time_constant = np.array([abs(popt[0])])

inactivation_time_constant
~~~~~~~~~~~~~~~~~~~~~~~~~~

`Python efeature`_ : Time constant for an ion channel inactivation trace.
Fits for trace maximum to stim end interval as A + B * exp(-t/tau).
Depends on inactivation_tc_end_skip setting, which removes a given number of data points at the end of the trace,
right before stim_end. This is useful to remove artifacts that would bias the fit. Default is 10 data points.

Attention! For voltage clamp data, user should pass the current response as voltage to efel.
See voltage clamp example for more details.

- **Required features**: time, voltage, stim_start, stim_end, inactivation_tc_end_skip (default = 10)
- **Units**: ms
- **Pseudocode**: ::

def exp_fit(t, tau, A0, A1) -> np.ndarray | float:
return A0 + A1 * np.exp(-t / tau)

# isolate stimulus interval
stim_start_idx = np.flatnonzero(time >= stim_start)[0]
stim_end_idx = np.flatnonzero(time >= stim_end)[0]
time_interval = time[stim_start_idx:stim_end_idx - end_skip]
voltage_interval = voltage[stim_start_idx:stim_end_idx - end_skip]

# keep trace going from voltage max to stim end
# remove end of trace to remove artifacts due to stimulus change
max_idx = np.argmax(voltage_interval)
time_interval = time_interval[max_idx:]
voltage_interval = voltage_interval[max_idx:]

# correct time so that it starts from 0
time_interval -= time_interval[0]

# fit
popt, _ = curve_fit(
exp_fit,
time_interval,
voltage_interval,
p0=(1., voltage_interval[-1], voltage_interval[0] - voltage_interval[-1]),
bounds=(((0, -np.inf, 0), np.inf)), # positive tau, positive A1
ilkilic marked this conversation as resolved.
Show resolved Hide resolved
nan_policy="omit",
)
time_constant = np.array([abs(popt[0])])

Extracellular features
----------------------

Expand Down
3 changes: 2 additions & 1 deletion docs/source/examples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,5 @@ Examples
load_nwb
nmc-portal
sonata-network
extrafeats_example
extrafeats_example
voltage_clamp
150 changes: 149 additions & 1 deletion efel/pyfeatures/pyfeatures.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,10 @@
'inv_third_ISI',
'inv_fourth_ISI',
'inv_fifth_ISI',
'inv_last_ISI'
'inv_last_ISI',
'activation_time_constant',
'deactivation_time_constant',
'inactivation_time_constant',
]


Expand Down Expand Up @@ -352,3 +355,148 @@ def phaseslope_max() -> np.ndarray | None:
return np.array([np.max(phaseslope)])
except ValueError:
return None


def exp_fit(t, tau, A0, A1) -> np.ndarray | float:
"""Exponential function used in exponential fitting.

Args:
t (ndarray or float): time series
tau (float): time constant
A0 (float): constant added to the exponential
A1 (float): constant multiplying the exponential
"""
return A0 + A1 * np.exp(-t / tau)


def activation_time_constant() -> np.ndarray | None:
"""Time constant for an ion channel activation trace.
Fits for stim_start to trace maximum interval as A - B * exp(-t/tau)."""
from scipy.optimize import curve_fit, OptimizeWarning

stim_start = _get_cpp_data("stim_start")
stim_end = _get_cpp_data("stim_end")
voltage = get_cpp_feature("voltage")
time = get_cpp_feature("time")

if voltage is None or time is None:
return None

# isolate stimulus interval
stim_start_idx = np.flatnonzero(time >= stim_start)[0]
stim_end_idx = np.flatnonzero(time >= stim_end)[0]
time_interval = time[stim_start_idx:stim_end_idx]
voltage_interval = voltage[stim_start_idx:stim_end_idx]

# keep trace going from stim_start to voltage max
max_idx = np.argmax(voltage_interval)
time_interval = time_interval[:max_idx + 1]
voltage_interval = voltage_interval[:max_idx + 1]

# correct time so that it starts from 0
time_interval -= time_interval[0]

# fit
try:
popt, _ = curve_fit(
exp_fit,
time_interval,
voltage_interval,
p0=(1., voltage_interval[-1], voltage_interval[0] - voltage_interval[-1]),
# positive tau, negative A1
bounds=(((0, -np.inf, -np.inf), (np.inf, np.inf, 0))),
nan_policy="omit",
)
except (ValueError, RuntimeError, OptimizeWarning):
return None

return np.array([abs(popt[0])])


def deactivation_time_constant() -> np.ndarray | None:
"""Time constant for an ion channel deactivation trace.
Fits for stim_start to stim_end as A + B * exp(-t/tau)."""
from scipy.optimize import curve_fit, OptimizeWarning

stim_start = _get_cpp_data("stim_start")
stim_end = _get_cpp_data("stim_end")
voltage = get_cpp_feature("voltage")
time = get_cpp_feature("time")

if voltage is None or time is None:
return None

# isolate stimulus interval
interval_indices = np.where((time >= stim_start) & (time < stim_end))
time_interval = time[interval_indices]
voltage_interval = voltage[interval_indices]

# correct time so that it starts from 0
time_interval -= time_interval[0]

# fit
try:
popt, _ = curve_fit(
exp_fit,
time_interval,
voltage_interval,
p0=(
1., voltage_interval[-1], max(
0, voltage_interval[0] - voltage_interval[-1]
)
),
bounds=(((0, -np.inf, 0), np.inf)), # positive tau, positive A1
ilkilic marked this conversation as resolved.
Show resolved Hide resolved
nan_policy="omit",
)
except (ValueError, RuntimeError, OptimizeWarning):
return None

return np.array([abs(popt[0])])


def inactivation_time_constant() -> np.ndarray | None:
"""Time constant for an ion channel inactivation trace.
Fits for trace maximum to stim end interval as A + B * exp(-t/tau)."""
from scipy.optimize import curve_fit, OptimizeWarning

stim_start = _get_cpp_data("stim_start")
stim_end = _get_cpp_data("stim_end")
voltage = get_cpp_feature("voltage")
time = get_cpp_feature("time")
# used to remove end of trace to remove artifacts due to stimulus change
end_skip = _get_cpp_data("inactivation_tc_end_skip")

if voltage is None or time is None:
return None

# isolate stimulus interval
stim_start_idx = np.flatnonzero(time >= stim_start)[0]
stim_end_idx = np.flatnonzero(time >= stim_end)[0]
time_interval = time[stim_start_idx:stim_end_idx - end_skip]
voltage_interval = voltage[stim_start_idx:stim_end_idx - end_skip]

# keep trace going from voltage max to stim end
# remove end of trace to remove artifacts due to stimulus change
max_idx = np.argmax(voltage_interval)
time_interval = time_interval[max_idx:]
voltage_interval = voltage_interval[max_idx:]

# correct time so that it starts from 0
if time_interval.size < 1:
return None
time_interval -= time_interval[0]

# fit
try:
popt, _ = curve_fit(
exp_fit,
time_interval,
voltage_interval,
p0=(1., voltage_interval[-1], voltage_interval[0] - voltage_interval[-1]),
bounds=(((0, -np.inf, 0), np.inf)), # positive tau, positive A1
nan_policy="omit",
)
except (ValueError, RuntimeError, OptimizeWarning):
ilkilic marked this conversation as resolved.
Show resolved Hide resolved
return None

return np.array([abs(popt[0])])
3 changes: 3 additions & 0 deletions efel/settings.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,8 @@ class Settings:
sahp_start (float): SAHP start (default: 5.0).
ignore_first_ISI (bool): Ignore first ISI (default: True).
impedance_max_freq (float): Impedance maximum frequency (default: 50.0).
inactivation_tc_end_skip (int): number of data points to skip before
stim end for inactivation_time_constant feature
"""

Threshold: float = -20.0
Expand Down Expand Up @@ -99,6 +101,7 @@ class Settings:
ignore_first_ISI: bool = True
impedance_max_freq: float = 50.0
AP_phaseslope_range: int = 2
inactivation_tc_end_skip: int = 10

def set_setting(self,
setting_name: str,
Expand Down
5 changes: 4 additions & 1 deletion efel/units/units.json
Original file line number Diff line number Diff line change
Expand Up @@ -156,5 +156,8 @@
"neg_peak_diff": "s",
"pos_peak_diff": "s",
"neg_image": "constant",
"pos_image": "constant"
"pos_image": "constant",
"activation_time_constant": "ms",
"deactivation_time_constant": "ms",
"inactivation_time_constant": "ms"
}
Loading