Skip to content

Commit

Permalink
enable LoRA + FSDP2 (pytorch#855)
Browse files Browse the repository at this point in the history
  • Loading branch information
weifengpy authored Jun 3, 2024
1 parent eac2dc5 commit 71741df
Show file tree
Hide file tree
Showing 11 changed files with 1,493 additions and 4 deletions.
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,13 @@ tune = "torchtune._cli.tune:main"
dev = [
"bitsandbytes>=0.43.0",
"pre-commit",
"pytest",
"pytest==7.4.0",
"pytest-cov",
"pytest-mock",
"pytest-integration",
"tensorboard",
"wandb",
"expecttest",
]

[tool.setuptools.dynamic]
Expand Down
86 changes: 86 additions & 0 deletions recipes/configs/dev/llama2/13B_lora_fsdp2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Config for multi-device LoRA with FSDP2 in lora_finetune_fsdp2.py
# using a Llama2 13B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-13b-hf --output-dir /tmp/Llama-2-13b-hf --hf-token <HF_TOKEN>
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_fsdp2 --config llama2/13B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_fsdp2 --config llama2/13B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 7B_lora_single_device.yaml
# or 7B_qlora_single_device.yaml and update the model and checkpoints to
# the 13B model.


# Model Arguments
model:
_component_: torchtune.models.llama2.lora_llama2_13b
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj']
apply_lora_to_mlp: True
apply_lora_to_output: True
lora_rank: 8
lora_alpha: 16

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-13b-hf/
checkpoint_files: [
pytorch_model-00001-of-00003.bin,
pytorch_model-00002-of-00003.bin,
pytorch_model-00003-of-00003.bin
]
adapter_checkpoint: null
recipe_checkpoint: null
output_dir: /tmp/Llama-2-13b-hf/
model_type: LLAMA2
resume_from_checkpoint: False

# Tokenizer
tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-13b-hf/tokenizer.model

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
train_on_input: True
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 2e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torch.nn.CrossEntropyLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 16

# Logging
output_dir: /tmp/lora_finetune_output
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False
86 changes: 86 additions & 0 deletions recipes/configs/dev/llama2/70B_lora_fsdp2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Config for multi-device LoRA with FSDP2 lora_finetune_fsdp2.py
# using a Llama2 70B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-70b-hf --output-dir /tmp/Llama-2-70b-hf --hf-token <HF_TOKEN>
#
# This config needs 8 GPUs to run
# # tune run --nproc_per_node 8 lora_finetune_fsdp2 --config llama2/70B_lora
#

# Model Arguments
model:
_component_: torchtune.models.llama2.lora_llama2_70b
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 16
lora_alpha: 32

tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-70b-hf/tokenizer.model

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-70b-hf
checkpoint_files: [
pytorch_model-00001-of-00015.bin,
pytorch_model-00002-of-00015.bin,
pytorch_model-00003-of-00015.bin,
pytorch_model-00004-of-00015.bin,
pytorch_model-00005-of-00015.bin,
pytorch_model-00006-of-00015.bin,
pytorch_model-00007-of-00015.bin,
pytorch_model-00008-of-00015.bin,
pytorch_model-00009-of-00015.bin,
pytorch_model-00010-of-00015.bin,
pytorch_model-00011-of-00015.bin,
pytorch_model-00012-of-00015.bin,
pytorch_model-00013-of-00015.bin,
pytorch_model-00014-of-00015.bin,
pytorch_model-00015-of-00015.bin,
]
recipe_checkpoint: null
output_dir: /tmp/Llama-2-70b-hf
model_type: LLAMA2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_dataset
train_on_input: True
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torch.nn.CrossEntropyLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 1

# Logging
output_dir: /tmp/lora_finetune_output
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True
83 changes: 83 additions & 0 deletions recipes/configs/dev/llama2/7B_lora_fsdp2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Config for multi-device LoRA finetuning with FSDP2 in lora_finetune_fsdp2.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN>
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config llama2/7B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config llama2/7B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 7B_lora_single_device.yaml
# or 7B_qlora_single_device.yaml


# Model Arguments
model:
_component_: torchtune.models.llama2.lora_llama2_7b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16

tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-7b-hf/tokenizer.model

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-7b-hf
checkpoint_files: [
pytorch_model-00001-of-00002.bin,
pytorch_model-00002-of-00002.bin
]
adapter_checkpoint: null
recipe_checkpoint: null
output_dir: /tmp/Llama-2-7b-hf
model_type: LLAMA2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
train_on_input: True
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torch.nn.CrossEntropyLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 32

# Logging
output_dir: /tmp/lora_finetune_output
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False
Loading

0 comments on commit 71741df

Please sign in to comment.