forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
1,493 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Config for multi-device LoRA with FSDP2 in lora_finetune_fsdp2.py | ||
# using a Llama2 13B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-13b-hf --output-dir /tmp/Llama-2-13b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_fsdp2 --config llama2/13B_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 4 lora_finetune_fsdp2 --config llama2/13B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# For single device LoRA finetuning please use 7B_lora_single_device.yaml | ||
# or 7B_qlora_single_device.yaml and update the model and checkpoints to | ||
# the 13B model. | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_13b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj'] | ||
apply_lora_to_mlp: True | ||
apply_lora_to_output: True | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-13b-hf/ | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00003.bin, | ||
pytorch_model-00002-of-00003.bin, | ||
pytorch_model-00003-of-00003.bin | ||
] | ||
adapter_checkpoint: null | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-13b-hf/ | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-13b-hf/tokenizer.model | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 2e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 16 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# Config for multi-device LoRA with FSDP2 lora_finetune_fsdp2.py | ||
# using a Llama2 70B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-70b-hf --output-dir /tmp/Llama-2-70b-hf --hf-token <HF_TOKEN> | ||
# | ||
# This config needs 8 GPUs to run | ||
# # tune run --nproc_per_node 8 lora_finetune_fsdp2 --config llama2/70B_lora | ||
# | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_70b | ||
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 16 | ||
lora_alpha: 32 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-70b-hf/tokenizer.model | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-70b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00015.bin, | ||
pytorch_model-00002-of-00015.bin, | ||
pytorch_model-00003-of-00015.bin, | ||
pytorch_model-00004-of-00015.bin, | ||
pytorch_model-00005-of-00015.bin, | ||
pytorch_model-00006-of-00015.bin, | ||
pytorch_model-00007-of-00015.bin, | ||
pytorch_model-00008-of-00015.bin, | ||
pytorch_model-00009-of-00015.bin, | ||
pytorch_model-00010-of-00015.bin, | ||
pytorch_model-00011-of-00015.bin, | ||
pytorch_model-00012-of-00015.bin, | ||
pytorch_model-00013-of-00015.bin, | ||
pytorch_model-00014-of-00015.bin, | ||
pytorch_model-00015-of-00015.bin, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-70b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# Config for multi-device LoRA finetuning with FSDP2 in lora_finetune_fsdp2.py | ||
# using a Llama2 7B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config llama2/7B_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_fsdp2 --config llama2/7B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# For single device LoRA finetuning please use 7B_lora_single_device.yaml | ||
# or 7B_qlora_single_device.yaml | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama2.lora_llama2_7b | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.llama2.llama2_tokenizer | ||
path: /tmp/Llama-2-7b-hf/tokenizer.model | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-2-7b-hf | ||
checkpoint_files: [ | ||
pytorch_model-00001-of-00002.bin, | ||
pytorch_model-00002-of-00002.bin | ||
] | ||
adapter_checkpoint: null | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-2-7b-hf | ||
model_type: LLAMA2 | ||
resume_from_checkpoint: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
train_on_input: True | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 32 | ||
|
||
# Logging | ||
output_dir: /tmp/lora_finetune_output | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False |
Oops, something went wrong.