Skip to content

Commit

Permalink
Reduce ops tests per test plan
Browse files Browse the repository at this point in the history
  • Loading branch information
kmilanovicTT committed Oct 9, 2024
1 parent a1a348c commit 6543c04
Show file tree
Hide file tree
Showing 3 changed files with 383 additions and 0 deletions.
3 changes: 3 additions & 0 deletions forge/test/operators/pytorch/reduce/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC

# SPDX-License-Identifier: Apache-2.0
3 changes: 3 additions & 0 deletions forge/test/operators/pytorch/reduce/conftest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC

# SPDX-License-Identifier: Apache-2.0
377 changes: 377 additions & 0 deletions forge/test/operators/pytorch/reduce/test_reduce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,377 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC

# SPDX-License-Identifier: Apache-2.0
#
# Tests for testing of reduce operators
#
# In this test we test pytorch reduce operators

# GENERAL OP SUPPORT TEST PLAN:
# 1. Operand type - any supported type
# 2. Operand source(s):
# (+) 2.1 From another op
# - Operator -> input
# (+) 2.2 From DRAM queue
# - Operator is first node in network
# - Input_queue flag = false
# (+) 2.3 Const Inputs (const eval pass)
# - Operator where all inputs are constants.
# (+) 2.4 From host
# - Input tensor as input of network
# - Operator is first node in network
# - Input_queue flag = true
# 3 Operand shapes type(s):
# (+) 3.1 Full tensor (i.e. full expected shape)
# - 3-4 by default P1 (high prioriy)
# - 2, 5, ++ include P2 (lower prioriy)
# (+) 3.2 Tensor reduce on one or more dims to 1
# - Vector
# - Only one dim is not equal to 1
# (+) 3.3 Scalar P2
# - Create tensor of dimension equal to 0 (tensor from scalar) or just to use scalar as simple value
# 4. Operand / output size of dimensions (few examples of each, 10 values total)
# (+) 4.1 Divisible by 32
# (+) 4.2 Prime numbers
# (+) 4.3 Very large (thousands, 10s of thousands)
# - 100x100, 100x1000
# - maybe nightly only
# (+) 4.4 Extreme ratios between height/width
# 4.5 ...probably many more interesting combinations here
# 5. Data format - all supported formats
# (/) 5.1 Output DF
# (/) 5.2 Intermediate DF
# (/) 5.3 Accumulation DF
# (+) 5.4 Operand DFs
# - Fix HiFi4 for math fidelity value
# (+) 6. Math fidelity - LoFi, HiFi2a, Hifi2b, Hifi3, Hifi4
# - Fix fp16b (default) for data format value
# (/) 7. Special attributes - if applicable.. like approx_mode for Exp, for example
# (/) 8. Special cases - if applicable
# 9. Variable number of operands - if applicable
# (/) Few representative values
# (/) Reuse inputs for selected operators



import pytest

from typing import List, Dict, Type, Optional, Any
from loguru import logger

import random
import torch
import forge
import forge.op

from forge.op_repo import TensorShape

from test.operators.utils import InputSourceFlags, VerifyUtils
from test.operators.utils import ShapeUtils
from test.operators.utils import InputSource
from test.operators.utils import TestVector
from test.operators.utils import TestResultFailing
from test.operators.utils import TestPlan
from test.operators.utils import FailingReasons
from test.operators.utils.compat import TestDevice
from test.operators.utils import RateLimiter
from test.operators.utils import TestCollection
from test.operators.utils import TestPlanUtils
from test.operators.utils import TestParamsFilter
from test.operators.utils import TestCollectionCommon


class ModelFromAnotherOp(torch.nn.Module):

model_name = "model_op_src_from_another_op"

def __init__(self, operator, opname, shape, kwargs):
super(ModelFromAnotherOp, self).__init__()
self.testname = "Reduce_pytorch_operator_" + opname + "_test_op_src_from_another_op"
self.operator = operator
self.opname = opname
self.shape = shape
self.kwargs = kwargs

def forward(self, x: torch.Tensor):
# we use Add operator to create one operands which is input for the reduce operator
add1 = torch.add(x, x)
output = self.operator(add1, **self.kwargs)
return output


class ModelDirect(torch.nn.Module):

model_name = "model_op_src_from_host"

def __init__(self, operator, opname, shape, kwargs):
super(ModelDirect, self).__init__()
self.testname = "Reduce_pytorch_operator_" + opname + "_test_op_src_from_host"
self.operator = operator
self.opname = opname
self.shape = shape
self.kwargs = kwargs

def forward(self, x: torch.Tensor):
output = self.operator(x, **self.kwargs)
return output


class ModelConstEvalPass(torch.nn.Module):

model_name = "model_op_src_const_eval_pass"

def __init__(self, operator, opname, shape, kwargs):
super(ModelConstEvalPass, self).__init__()
self.testname = "Reduce_pytorch_operator_" + opname + "_test_op_src_const_eval_pass"
self.operator = operator
self.opname = opname
self.shape = shape
self.constant_shape = ShapeUtils.reduce_microbatch_size(shape)
self.kwargs = kwargs

self.c1 = (torch.rand(*self.constant_shape) - 0.5)

def forward(self, x):
v1 = self.operator(self.c1, **self.kwargs)
v2 = self.operator(x, **self.kwargs)
# add consume inputs
add = torch.add(v1, v2)
return add

class TestVerification:

MODEL_TYPES = {
InputSource.FROM_ANOTHER_OP: ModelFromAnotherOp,
InputSource.FROM_HOST: ModelDirect,
InputSource.FROM_DRAM_QUEUE: ModelDirect,
InputSource.CONST_EVAL_PASS: ModelConstEvalPass,
}

@classmethod
def verify(
cls,
test_device: TestDevice,
test_vector: TestVector,
number_of_operands: int = 1,
input_params: List[Dict] = [],
):
'''Common verification function for all tests'''

input_source_flag: InputSourceFlags = None
if test_vector.input_source in (InputSource.FROM_DRAM_QUEUE,):
input_source_flag = InputSourceFlags.FROM_DRAM

operator = getattr(torch, test_vector.operator)

kwargs = test_vector.kwargs if test_vector.kwargs else {}

model_type = cls.MODEL_TYPES[test_vector.input_source]
pytorch_model = model_type(operator=operator, opname=test_vector.operator, shape=test_vector.input_shape, kwargs=kwargs)
# forge_model = forge.PyTorchModule(pytorch_model.model_name, pytorch_model)

input_shapes = tuple([test_vector.input_shape for _ in range(number_of_operands)])
logger.trace(f"***input_shapes: {input_shapes}")

VerifyUtils.verify(
model=pytorch_model,
test_device=test_device,
input_shapes=input_shapes,
input_params=input_params,
input_source_flag=input_source_flag,
dev_data_format=test_vector.dev_data_format,
math_fidelity=test_vector.math_fidelity,
pcc=test_vector.pcc,
)

class TestParamsData:

__test__ = False # Avoid collecting TestParamsData as a pytest test

test_plan: TestPlan = None

@classmethod
def get_params_test_plan(cls, filter: Optional[TestParamsFilter] = None):
return TestPlanUtils.generate_params(cls.test_plan, filter)

@classmethod
def get_params_from_id_file(cls, test_ids_file: str, filter: Optional[TestParamsFilter] = None):
test_plan_ids = TestPlanUtils.build_test_plan_from_id_file(test_ids_file, cls.test_plan)
return TestPlanUtils.generate_params(test_plan_ids, filter)

@classmethod
def get_params_from_id_list(cls, test_ids: List[str], filter: Optional[TestParamsFilter] = None):
test_plan_ids = TestPlanUtils.build_test_plan_from_id_list(test_ids, cls.test_plan)
return TestPlanUtils.generate_params(test_plan_ids, filter)

@classmethod
def generate_kwargs(cls, test_vector: TestVector):
shape_with_kwargs = cls.extend_shape_with_dims_and_keepdims(test_vector.input_shape)
kwarg_list = []
for item in shape_with_kwargs:
kwargs = {}
kwargs['dim'] = item[1]
kwargs['keepdim'] = item[2]
kwarg_list.append(kwargs)
return kwarg_list

@classmethod
def extend_shape_with_dims_and_keepdims(cls, shape):
shape_with_dims_and_keepdims = list()
for dim in list(range(0, len(shape), 1)):
shape_with_dims_and_keepdims.append((shape, dim, True))
shape_with_dims_and_keepdims.append((shape, dim, False))
return shape_with_dims_and_keepdims


class TestCollectionData:

__test__ = False # Avoid collecting TestCollectionData as a pytest test

implemented = TestCollection(
operators=[
"sum", #00
"mean", #01
],
)

all = TestCollection(
operators=implemented.operators,
input_sources=TestCollectionCommon.all.input_sources,
input_shapes=TestCollectionCommon.all.input_shapes,
dev_data_formats=TestCollectionCommon.all.dev_data_formats,
math_fidelities=TestCollectionCommon.all.math_fidelities,
)

single = TestCollection(
input_sources=TestCollectionCommon.single.input_sources,
input_shapes=TestCollectionCommon.single.input_shapes,
dev_data_formats=TestCollectionCommon.single.dev_data_formats,
math_fidelities=TestCollectionCommon.single.math_fidelities,
)

TestParamsData.test_plan = TestPlan(
collections = [
# Test plan:
# 2. Operand source(s):
# 3. Operand shapes type(s):
# 4. Operand / output size of dimensions
TestCollection(
operators=TestCollectionData.all.operators,
input_sources=TestCollectionData.all.input_sources,
input_shapes=TestCollectionData.all.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
),
# Test plan:
# 5. Data format
# TestCollection(
# operators=TestCollectionData.all.operators,
# input_sources=TestCollectionData.single.input_sources,
# input_shapes=TestCollectionData.single.input_shapes,
# kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
# dev_data_formats=TestCollectionData.all.dev_data_formats,
# math_fidelities=TestCollectionData.single.math_fidelities,
# ),
# # Test plan:
# # 6. Math fidelity
# TestCollection(
# operators=TestCollectionData.all.operators,
# input_sources=TestCollectionData.single.input_sources,
# input_shapes=TestCollectionData.single.input_shapes,
# kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
# dev_data_formats=TestCollectionData.single.dev_data_formats,
# math_fidelities=TestCollectionData.all.math_fidelities
# ),
],
failing_rules = []
)


@pytest.mark.parametrize("test_vector", TestParamsData.get_params_test_plan())
def test_plan(test_vector: TestVector, test_device):
TestVerification.verify(test_device=test_device, test_vector=test_vector)





####################################################################################################

# failing_shapes_filtered = filter(lambda x: x not in ((32, 32, 64),) + ((1, 32, 32, 64),) + ((11, 32, 32, 64),), get_input_shapes())
# failing_shapes_array = []
# for item in failing_shapes_filtered:
# failing_shapes_array.append(item)

# shapes_with_dim_2 = filter(lambda x: len(x) == 2, get_input_shapes())
# shapes_with_dim_2_array = []
# for item in shapes_with_dim_2:
# shapes_with_dim_2_array.append(item)

# test_plan = TestPlan(
# tests = [
# # Test plan:
# # 2. Operand source(s):
# # 3. Operand shapes type(s):
# # 4. Operand / output size of dimensions
# TestVectors(
# operators=get_reduce_ops(),
# input_sources=TestData.INPUT_SOURCES,
# input_shapes=get_input_shapes_test_plan(),
# ),
# # 5. Data format
# TestVectors(
# operators=get_reduce_ops(),
# input_sources=TestData.INPUT_SOURCES_SINGLE,
# input_shapes=get_input_shapes_df_mf(),
# dev_data_formats=TestData.dev_data_formats,
# math_fidelities=TestData.math_fidelities_defaults,
# ),
# # Test plan:
# # 6. Math fidelity
# TestVectors(
# operators=get_reduce_ops(),
# input_sources=TestData.INPUT_SOURCES_SINGLE,
# input_shapes=get_input_shapes_df_mf(),
# dev_data_formats=TestData.dev_data_formats_defaults,
# math_fidelities=TestData.math_fidelities,
# ),
# ],
# failing_tests = [
# TestVectors(
# operators=None,
# input_sources=None,
# input_shapes=[
# (32, 32, 64),
# (1, 32, 32, 64),
# (11, 32, 32, 64),
# ],
# failing_reason=FailingReasons.DATA_MISMATCH,
# ),
# TestVectors(
# operators=None,
# input_sources=None,
# input_shapes=failing_shapes_array,
# failing_reason=FailingReasons.COMPILATION_FAILED,
# ),
# TestVectors(
# operators=None,
# input_sources=None,
# input_shapes=shapes_with_dim_2_array,
# skip_reason=FailingReasons.SEG_FAULT,
# ),
# TestVectors(
# operators=None,
# input_sources=TestData.INPUT_SOURCES_SINGLE,
# input_shapes=get_input_shapes_df_mf(),
# dev_data_formats=[
# forge.DataFormat.Bfp4,
# forge.DataFormat.Bfp8,
# forge.DataFormat.Float16,
# forge.DataFormat.Lf8,
# ],
# math_fidelities=TestData.math_fidelities_defaults,
# skip_reason=FailingReasons.SEG_FAULT,
# ),
# ]

# )

0 comments on commit 6543c04

Please sign in to comment.