Source code for the numerical results presented in the paper "Gaussian smoothing gradient descent for minimizing high-dimensional non-convex functions".
Benchmark different types of optimization algorithms on various test functions.
Experiment results will be saved to the ./images/
folder that will be created.
Currently includes the following files:
target_functions.py
-- set up a target function and sample an initial guessbenchmark_algorithms.py
-- compare optimization algoritms on series of testshyperparameter_search.py
-- test different hyperparameters for each function and algorithmvisualization.py
-- plot optimization values from the logged data
Implemented algorithms (in ./algorithms/
):
adam.py
-- Adam optimizerrmsprop.py
-- RMSProp optimizernag.py
-- Nesterov's Accelerated Gradient Descentdgs.py
-- Directional Gaussian Smoothingadgs.py
-- DGS with exponential decay on sigmalsgd.py
-- Laplacian Smooth Gradient Descentmcgs.py
-- Monte Carlo Gaussian Smoothingslgh.py
-- Single Loop Gaussian Homotopy
Old files that are now in ./extra_scripts/
:
main.py
-- use to launch numerical optimizationmain_tf.py
-- use to launch network training (very slow)bfgs_dgs.py
-- define BFGS+DGS algorithmsbfgs.py
-- define Smoothed BFGS (it doesn't really work though)smoothing_visualization.py
-- create interactive smoothing plot