-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
164 lines (126 loc) · 5.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import tensorflow as tf
def generate_run_ID(options):
'''
Create a unique run ID from the most relevant
parameters. Remaining parameters can be found in
params.npy file.
'''
params = [
'steps', str(options.sequence_length),
'batch', str(options.batch_size),
options.RNN_type,
str(options.Ng),
options.activation,
'rf', str(options.place_cell_rf),
'DoG', str(options.DoG),
options.topology,
'lr', str(options.learning_rate),
'weight_decay', str(options.weight_decay),
]
separator = '_'
run_ID = separator.join(params)
run_ID = run_ID.replace('.', '')
return run_ID
def get_2d_sort(x1,x2):
"""
Reshapes x1 and x2 into square arrays, and then sorts
them such that x1 increases downward and x2 increases
rightward. Returns the order.
"""
n = int(np.round(np.sqrt(len(x1))))
total_order = x1.argsort()
total_order = total_order.reshape(n,n)
for i in range(n):
row_order = x2[total_order.ravel()].reshape(n,n)[i].argsort()
total_order[i] = total_order[i,row_order]
total_order = total_order.ravel()
return total_order
def dft(N,real=False,scale='sqrtn'):
if not real:
return scipy.linalg.dft(N,scale)
else:
cosines = np.cos(2*np.pi*np.arange(N//2+1)[None,:]/N*np.arange(N)[:,None])
sines = np.sin(2*np.pi*np.arange(1,(N-1)//2+1)[None,:]/N*np.arange(N)[:,None])
if N%2==0:
cosines[:,-1] /= np.sqrt(2)
F = np.concatenate((cosines,sines[:,::-1]),1)
F[:,0] /= np.sqrt(N)
F[:,1:] /= np.sqrt(N/2)
return F
def skaggs_power(Jsort):
F = dft(int(np.sqrt(N)), real=True)
F2d = F[:,None,:,None]*F[None,:,None,:]
F2d_unroll = np.reshape(F2d, (N, N))
F2d_inv = F2d_unroll.conj().T
Jtilde = F2d_inv.dot(Jsort).dot(F2d_unroll)
return (Jtilde[1,1]**2 + Jtilde[-1,-1]**2) / (Jtilde**2).sum()
def skaggs_power_2(Jsort):
J_square = np.reshape(Jsort, (n,n,n,n))
Jmean = np.zeros([n,n])
for i in range(n):
for j in range(n):
Jmean += np.roll(np.roll(J_square[i,j], -i, axis=0), -j, axis=1)
# Jmean[0,0] = np.max(Jmean[1:,1:])
Jmean = np.roll(np.roll(Jmean, n//2, axis=0), n//2, axis=1)
Jtilde = np.real(np.fft.fft2(Jmean))
Jtilde[0,0] = 0
sk_power = Jtilde[1,1]**2 + Jtilde[0,1]**2 + Jtilde[1,0]**2
sk_power += Jtilde[-1,-1]**2 + Jtilde[0,-1]**2 + Jtilde[-1,0]**2
sk_power /= (Jtilde**2).sum()
return sk_power
def calc_err():
inputs, _, pos = next(gen)
pred = model(inputs)
pred_pos = place_cells.get_nearest_cell_pos(pred)
return tf.reduce_mean(tf.sqrt(tf.reduce_sum((pos - pred_pos)**2, axis=-1)))
from visualize import compute_ratemaps, plot_ratemaps
def compute_variance(res, n_avg):
activations, rate_map, g, pos = compute_ratemaps(model, data_manager, options, res=res, n_avg=n_avg)
counts = np.zeros([res,res])
variance = np.zeros([res,res])
x_all = (pos[:,0] + options['box_width']/2) / options['box_width'] * res
y_all = (pos[:,1] + options['box_height']/2) / options['box_height'] * res
for i in tqdm(range(len(g))):
x = int(x_all[i])
y = int(y_all[i])
if x >=0 and x < res and y >=0 and y < res:
counts[x, y] += 1
variance[x, y] += np.linalg.norm(g[i] - activations[:, x, y]) / np.linalg.norm(g[i]) / np.linalg.norm(activations[:,x,y])
for x in range(res):
for y in range(res):
if counts[x, y] > 0:
variance[x, y] /= counts[x, y]
return variance
def load_trained_weights(model, trainer, weight_dir):
''' Load weights stored as a .npy file (for github)'''
# Train for a single step to initialize weights
trainer.train(n_epochs=1, n_steps=1, save=False)
# Load weights from npy array
weights = np.load(weight_dir, allow_pickle=True)
model.set_weights(weights)
print('Loaded trained weights.')
def load_model(options, model, folder=None):
if not folder:
folder = options.topology
optimizer = tf.keras.optimizers.Adam(learning_rate=options.learning_rate)
ckpt = tf.train.Checkpoint(step=tf.Variable(0), optimizer=optimizer, net=model)
ckpt_dir='../trained_models/'+folder+'/'+options.run_ID+'/ckpts'
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
if ckpt_manager.latest_checkpoint:
print("Restored trained model from {}".format(ckpt_manager.latest_checkpoint))
else:
print("No trained model found")
return model
def load_model_folder(options, model, folder):
optimizer = tf.keras.optimizers.Adam(learning_rate=options.learning_rate)
ckpt = tf.train.Checkpoint(step=tf.Variable(0), optimizer=optimizer, net=model)
ckpt_dir=folder
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
if ckpt_manager.latest_checkpoint:
print("Restored trained model from {}".format(ckpt_manager.latest_checkpoint))
else:
print("No trained model found")
return model