Skip to content

sihoonchoi/GALJ-MOF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GALJ-MOF

GALJ-MOF (Gaussian-Approximated Lennard-Jones for Metal-Organic Frameworks)

Usage

  1. Run python gaussian_approximation.py.

  2. Paramaters of 8 Gaussians for each element will be saved in the gaussian_params directory.

  3. To generate GI descriptor grids, execute the command python get_gi.py. Include the following arguments for customization:

  • --mof-dir: path to the directory containing CIF files
  • --sigma: a list of sigma parameters to generate GI descriptors
  • --grid-spacing: grid spacing of GI grids (default: 0.2)

The generated GI descriptor grids will be stored in the grids directory under the filename mofname.npy. To execute the get_gi.py script, use the command like:

python get_gi.py --mof-dir MOFs --sigma 0.1 0.2 0.3 --grid-spacing 0.5

  1. The first 3 columns in mofname.npy represent the x, y, and z coordinates of grid points. Subsequent columns contain GI descriptors with their corresponding --sigma values.

If you use GALJ-MOF in a scientific publication, please cite the following paper:

S. Choi, D. S. Sholl, and A. J. Medford, Gaussian Approximation of Dispersion Potentials for Efficient Featurization and Machine-Learning Predictions of Metal-Organic Frameworks, J. Chem. Phys. 2022, 156, 214108. DOI: https://doi.org/10.1063/5.0091405


Dependencies

  • NumPy
  • SciPy
  • Atomic Simulation Environment (ASE)
  • PyTorch
  • Skorch
  • AMPTorch

Acknowledgements

  • This works was supported by the Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-SC0020306.
  • The codes in get_gi.py is adapted from AMPtorch/CEMT. For installation and instruction of the AMPtorch package, please refer to its official GitHub repo.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published