PLAN:
- make yakvdb thread-safe
- distinct RW locks on pages in the pool?
- cannot use it in async context now:
- the trait
Sync
is not implemented forRefCell<...>
- the trait
- split
Tree
trait into pub KV-only and internal page-aware- to avoid leaking impl details leak into public API
- iterator impl (feature
iter
)- range lookup (returning an iterator)
- CLI
- connect to a file and explore it
lookup X64'00cafebabe'
insert X64'00cafebabe' X64'00deadbeef'
remove X64'00cafebabe'
above X64'00cafebabe'
below X64'00cafebabe'
min
max
len
(iterate frommin
tomax
)- basic defragment/restore utilities
- add async impl based on
tokio::fs
- you can't go back to sync though
- somehow make feature switch to async?
Extremely simple (simplest possible?) single-file BTree-based key-value database.
Built for fun and learning: goal is to "demystify" the "database".
Operations amortized runtime complexity:
- insert/remove: O(log(N) * log(K) + K)
- lookup/min/max/above/below: O(log(N) * log(K))
Where:
- N - number of entries in a tree
- K - number of entries in a page
Binary search is run for each page (log(K)) and touches at most log(N) pages.
On insert/remove each page performs O(K) cleanup to keep keys ordered, as well as extra housekeeping is performed if necessary (split or merge of pages).
Each insert/remove gets flushed to disk for durability.
Just cargo run --release
to run example from main.rs:
- create/open database (file)
- generate random key-value pairs
- insert all key-value pairs
- lookup all keys and check values match
- iterate all keys in ascending order
- iterate all keys in descending order
- remove all keys and check database is empty
The typical result looks like one below.
$ RUST_LOG=info cargo run --release
[snip]
# 1M
[...] file="target/main_1M.tmp" count=1000000 page=4096
[...] insert: 28742 ms (rate=34792 op/s)
[...] lookup: 5316 ms (rate=188111 op/s)
[...] iter: min=000003cf1bb4e04d max=ffffe6e240320123
[...] iter: asc 553 ms (rate=1808318 op/s) n=1000000
[...] iter: desc 538 ms (rate=1858736 op/s) n=1000000
[...] remove: 27101 ms (rate=36899 op/s)
# 10M
[...] file="target/10M.db" count=10000000 page=4096
[...] insert: 371971 ms (rate=26883 op/s)
[...] lookup: 95038 ms (rate=105221 op/s)
[...] iter: min=00000244ad95c9eb max=ffffffbd837a505b
[...] iter: asc 6793 ms (rate=1472103 op/s) n=10000000
[...] iter: desc 7008 ms (rate=1426940 op/s) n=10000000
[...] remove: 368056 ms (rate=27169 op/s)
# 100M
[...] file="target/100M.db" count=100000000 page=4096
[...] insert: 4387618 ms (rate=22791 op/s)
[...] lookup: 1003484 ms (rate=99652 op/s)
[...] iter: min=000000542c79d673 max=ffffffbd837a505b
[...] iter: asc 74953 ms (rate=1334169 op/s) n=100000000
[...] iter: desc 73857 ms (rate=1353967 op/s) n=100000000
[...] remove: 4145790 ms (rate=24120 op/s)
use std::cell::Ref;
use crate::api::error::Result;
use crate::disk::block::Block;
use crate::disk::file::File;
// Create new database with given page_size
let mut db: File<Block> = File::make(path, /*page_size=*/4096).unwrap();
// Or open a database from an existing file
let mut db: File<Block> = File::open(path).unwrap();
let r: Result<Optional<Ref<u8>>> = db.lookup(&b"key");
let _: Result<()> = db.insert(&b"key", &b"val");
let _: Result<()> = db.remove(&b"key");
// To iterate: db.min(), db.max(), db.above(&[u8]), db.below(&[u8])