This repository contains the Jupyter notebooks for the VIB course on Machine Learning: "A tour of Machine Learning: classification".
You can fork this to your own repository to obtain a working copy.
Each notebook contains a button to run the code in Google Colaboratory.
The lectures can be watched on Youtube.
You will enjoy competing against each other to fit the best performing model in the Kaggle competition.
9:30 Introduction to Machine Learning
https://www.youtube.com/watch?v=N9p81OwKI18&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=1&t=1s
10:00 Data fitting
https://www.youtube.com/watch?v=MhXYAAYj69Q&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=2
Some discussion about gradient descent.
Hands on: Hitsone_marks_lr.ipynb section 1
10:45 Sanity Break
11:00 Logistic regression
https://www.youtube.com/watch?v=JaoCcC1UIa4&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=3
Introduction to learning platform Kaggle + Histone mark contest
Hands on: Hitsone_marks_lr.ipynb sections 2, 3 and 4
12:15 Virtual lunch time
13:15 Model complexity
https://www.youtube.com/watch?v=7JH3kNdai-4&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=4
Hands on: Hitsone_marks_lr.ipynb section 5
14:00 Competition time
In this section it is up to you to fit and optimze a classification model, evaluate it, and make predictions on the test set. At this point there should be enough time to help each of you individually.
9:30 Bias & Variance
https://www.youtube.com/watch?v=5Nvoy7VEuJA&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=5
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
Hands on: Hitsone_marks_dt.ipynb
11:00 Improve your Kaggle AUC score
12:15 Virtual lunch time
13:15 What is deep learning?
https://www.youtube.com/watch?v=x2FHuttvApE&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=6
14:30 Sanity Break
14:45 Discussions, Q&A
https://playground.tensorflow.org/
Coursera ML course: https://www.coursera.org/learn/machine-learning
Kaggle learning: https://www.kaggle.com/learn/overview and https://www.kaggle.com/sashr07/kaggle-titanic-tutorial