Skip to content

sangho-vision/avbert

Repository files navigation

Parameter Efficient Multimodal Transformers for Video Representation Learning

This repository contains the code and models for our ICLR 2021 paper:

Parameter Efficient Multimodal Transformers for Video Representation Learning
Sangho Lee, Youngjae Yu, Gunhee Kim, Thomas Breuel, Jan Kautz, Yale Song
[paper] [poster] [slides]

@inproceedings{lee2021avbert,
    title="{Parameter Efficient Multimodal Transformers for Video Representation Learning}",
    author={Sangho Lee and Youngjae Yu and Gunhee Kim and Thomas Breuel and Jan Kautz and Yale Song},
    booktitle={ICLR},
    year=2021
}

System Requirements

  • Python >= 3.7.6
  • FFMpeg 4.3.1
  • CUDA >= 10.1 supported GPUs with at least 24GB memory

Installation

  1. Install PyTorch 1.6.0, torchvision 0.7.0 and torchaudio 0.6.0 for your environment. Follow the instructions in HERE.

  2. Install other required packages.

pip install -r requirements.txt

Download Data

python download_ucf101.py
python download_esc50.py
python download_ks.py
python download_checkpoint.py

Experiments

To run experiments with a single GPU.

UCF101 (split: 1, 2 or 3)

cd code
python run_net.py \
    --cfg_file configs/ucf101/config.yaml \
    --configuration ucf101 \
    --pretrain_checkpoint_path checkpoints/checkpoint.pyth \
    TRAIN.DATASET_SPLIT <split>
    TEST.DATASET_SPLIT <split>

ESC-50 (split: 1, 2, 3, 4 or 5)

cd code
python run_net.py \
    --cfg_file configs/esc50/config.yaml \
    --configuration esc50 \
    --pretrain_checkpoint_path checkpoints/checkpoint.pyth \
    TRAIN.DATASET_SPLIT <split>
    TEST.DATASET_SPLIT <split>

Kinetics-Sounds

cd code
python run_net.py \
    --cfg_file configs/kinetics-sounds/config.yaml \
    --configuration kinetics-sounds \
    --pretrain_checkpoint_path checkpoints/checkpoint.pyth

After submission, we further adjusted hyperparameters and achieved the following results.

Dataset Top-1 Accuracy Top-5 Accuracy
UCF101 87.5 97.4
ESC-50 85.9 96.9
Kinetis-Sounds 85.8 97.8

Acknowledgments

This source code is based on PySlowFast.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages