Skip to content

rahulsamant37/language-translation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🌐 Neural Language Translation System

English-to-Spanish Translation Using Advanced Deep Learning

TensorFlow Keras Python

Building a sophisticated English-to-Spanish translation model using neural machine translation with sequence-to-sequence architecture.

🎯 Key Features

  • Encoder-Decoder LSTM Architecture
  • Pre-trained GloVe Embeddings
  • Sequence-to-Sequence Learning
  • Bidirectional Processing

🧠 Background

The system leverages an Encoder-Decoder LSTM model with seq2seq architecture to tackle many-to-many sequence problems. This powerful architecture excels at:

  • 📝 Text Summarization
  • 🤖 Chatbot Development
  • 💬 Conversational Modeling
  • 🔄 Neural Machine Translation

🛠️ Technical Requirements

# Core Dependencies
pip install -r requirements.txt

# For visualization support
brew install graphviz

Required Libraries

  • 🔵 TensorFlow
  • 🟡 Keras
  • 🟢 NumPy
  • 🟣 Graphviz

📊 Dataset

Access the training corpus here: Anki Spanish-English Dataset

Download spa-eng.zip and extract to data/spa-eng/spa.txt

🔄 Workflow Overview

flowchart TD
    subgraph DataPrep["Data Preparation"]
        A[Load Dataset] --> B[Preprocess Data]
        B --> C[Generate Two Copies of Translated Text]
        C -->|Copy 1| D[Add Start-of-Sentence Token]
        C -->|Copy 2| E[Add End-of-Sentence Token]
    end

    subgraph Tokenization["Tokenization & Embedding"]
        F[Tokenize Input/Output Sentences] --> G[Convert Words to Integers]
        G --> H[Create Word-to-Index Dictionaries]
        H --> I[Get Vocabulary Sizes]
        I --> J[Find Max Sentence Lengths]
        J --> K[Load GloVe Embeddings]
        K --> L[Create Embedding Matrix]
    end

    subgraph ModelArch["Model Architecture"]
        M[Create Encoder LSTM] --> N[Generate Hidden & Cell States]
        N --> O[Create Decoder LSTM]
        O --> P[Add Dense Output Layer]
    end

    subgraph Training["Training Process"]
        Q[Input English Sentence] --> R[Encode Sentence]
        R --> S[Generate Initial States]
        S --> T[Decode with start token]
        T --> U[Generate Spanish Words]
        U --> V[Compare with Ground Truth]
    end

    subgraph Prediction["Prediction Pipeline"]
        W[Input New Sentence] --> X[Encode with Trained Encoder]
        X --> Y[Initialize with start token]
        Y --> Z[Generate Word]
        Z --> AA{Is End Token?}
        AA -->|No| BB[Update States]
        BB --> Z
        AA -->|Yes| CC[Final Translation]
    end

    DataPrep --> Tokenization
    Tokenization --> ModelArch
    ModelArch --> Training
    ModelArch --> Prediction
Loading

🏗️ Architecture Overview

The Neural Machine Translation model consists of two primary components:

1. Encoder LSTM

  • Input: Original English sentence
  • Output: Encoded representation + states

2. Decoder LSTM

  • Input: Encoder states + start token
  • Output: Translated Spanish sentence

🔄 Processing Pipeline

  1. Data Preprocessing

    • Raw text processing
    • Special token insertion (<sos>, <eos>)
  2. Tokenization & Embedding

    • Word-to-integer conversion
    • Dictionary creation
    • Length normalization
    • GloVe embedding integration
  3. Training Process

    • Bidirectional encoding
    • State generation
    • Sequential decoding
    • Error comparison
  4. Prediction Pipeline

    • New sentence encoding
    • Iterative word generation
    • Translation assembly

💫 Advanced Features

Word Embeddings

We utilize Stanford's GloVe embeddings for enhanced semantic understanding:

  • 100-dimensional word vectors
  • Pre-trained on massive corpora
  • Rich semantic relationships

Padding Strategy

  • Encoder: Zero-padding at start
  • Decoder: Zero-padding at end
  • Ensures consistent input dimensions

🚀 Improvements & Future Work

  1. Training Enhancements

    • Increase training epochs
    • Expand dataset size
    • Implement dropout
  2. Architecture Updates

    • Add attention mechanisms
    • Implement beam search
    • Enhanced context handling

⚡ Quick Start

# Example usage
from translator import NeuralTranslator

translator = NeuralTranslator()
translator.load_model('pretrained_weights.h5')

english_text = "Hello, how are you?"
spanish_translation = translator.translate(english_text)

📈 Performance Notes

  • Current training: 5 epochs
  • Dataset: 20,000 sentence pairs
    • Training: 18,000
    • Validation: 2,000

🎯 Conclusions

The system demonstrates the power of:

  • ✅ Advanced NLP techniques
  • ✅ Sequence-to-sequence learning
  • ✅ LSTM-based encoding/decoding
  • ✅ Neural machine translation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published