Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "Revert "merge (undocumented) conveyor simulation changes"" #27

Merged
merged 1 commit into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions qopt/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,3 +82,12 @@
__version__ = '1.3'
__license__ = 'GNU GPLv3+'
__author__ = 'Julian Teske, Forschungszentrum Juelich'


try:
from jax.config import config
config.update("jax_enable_x64", True)
#TODO: add new objects here/ import other stuff?
# __all__ += []
except ImportError:
pass
125 changes: 124 additions & 1 deletion qopt/amplitude_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,10 +64,11 @@
"""

from abc import ABC, abstractmethod
from typing import Callable
from typing import Callable, Optional

import numpy as np

from typing import Union

class AmplitudeFunction(ABC):
"""Abstract Base class of the amplitude function. """
Expand Down Expand Up @@ -218,3 +219,125 @@ def derivative_by_chain_rule(self, deriv_by_ctrl_amps: np.ndarray,
# return: shape (time, func, par)

return np.einsum('imj,ikj->ikm', du_by_dx, deriv_by_ctrl_amps)


###############################################################################

try:
import jax.numpy as jnp
from jax import jit,vmap,jacfwd
_HAS_JAX = True
except ImportError:
from unittest import mock
jit, vmap, jacfwd = mock.Mock(), mock.Mock(), mock.Mock()
jnp = mock.Mock()
_HAS_JAX = False


class IdentityAmpFuncJAX(AmplitudeFunction):
"""See docstring of class without JAX.
Designed to return jax-numpy-arrays.
"""

def __init__(self):
if not _HAS_JAX:
raise ImportError("JAX not available")

def __call__(self, x: Union[np.ndarray, jnp.ndarray]) -> jnp.ndarray:
"""See base class. """
return jnp.asarray(x)

def derivative_by_chain_rule(
self,
deriv_by_ctrl_amps: Union[np.ndarray,jnp.ndarray],
x: Union[np.ndarray, jnp.ndarray]) -> jnp.ndarray:
"""See base class. """
return jnp.asarray(deriv_by_ctrl_amps)


class UnaryAnalyticAmpFuncJAX(AmplitudeFunction):
"""See docstring of class without JAX.
Designed to return jax-numpy-arrays.
Functions need to be compatible with jit.
(Includes that functions need to be pure
(i.e. output solely depends on input)).
"""

def __init__(self,
value_function: Callable[[float, ], float],
derivative_function: [Callable[[float, ], float]]):
if not _HAS_JAX:
raise ImportError("JAX not available")
self.value_function = jit(jnp.vectorize(value_function))
self.derivative_function = jit(jnp.vectorize(derivative_function))

def __call__(self, x: Union[np.ndarray, jnp.ndarray]) -> jnp.ndarray:
"""See base class. """
return jnp.asarray(self.value_function(x))

def derivative_by_chain_rule(
self,
deriv_by_ctrl_amps: Union[np.ndarray, jnp.ndarray], x):
"""See base class. """
du_by_dx = self.derivative_function(x)
# du_by_dx shape: (n_time, n_ctrl)
# deriv_by_ctrl_amps shape: (n_time, n_func, n_ctrl)
# deriv_by_opt_par shape: (n_time, n_func, n_ctrl
# since the function is unary we have n_ctrl = n_amps
return jnp.einsum('ij,ikj->ikj', du_by_dx, deriv_by_ctrl_amps)


class CustomAmpFuncJAX(AmplitudeFunction):
"""See docstring of class without JAX.
Designed to return jax-numpy-arrays.
Functions need to be compatible with jit.
(Includes that functions need to be pure
(i.e. output solely depends on input)).
If derivative_function=None, autodiff is used.
t_to_vectorize: if value_function/derivative_function not yet
vectorized for num_t
"""

def __init__(
self,
value_function: Callable[[Union[np.ndarray, jnp.ndarray],],
Union[np.ndarray, jnp.ndarray]],
derivative_function: Callable[[Union[np.ndarray, jnp.ndarray],],
Union[np.ndarray, jnp.ndarray]],
t_to_vectorize: bool = False
):
if not _HAS_JAX:
raise ImportError("JAX not available")
if t_to_vectorize == True:
self.value_function = jit(vmap(value_function),in_axes=(0,))
else:
self.value_function = jit(value_function)
if derivative_function is not None:
if t_to_vectorize == True:
self.derivative_function = jit(vmap(derivative_function),in_axes=(0,))
else:
self.derivative_function = jit(derivative_function)
else:
if t_to_vectorize == True:
def der_wrapper(x):
return jnp.swapaxes(vmap(jacfwd(lambda x: value_function(x)),in_axes=(0,))(x),1,2)
else:
def der_wrapper(x):
return jnp.swapaxes(vmap(jacfwd(lambda x: value_function(jnp.expand_dims(x,axis=0))[0,:]),in_axes=(0,))(x),1,2)
self.derivative_function = jit(der_wrapper)

def __call__(self, x: Union[np.ndarray, jnp.ndarray]) -> jnp.ndarray:
"""See base class. """
return jnp.asarray(self.value_function(x))

def derivative_by_chain_rule(
self,
deriv_by_ctrl_amps: Union[np.ndarray, jnp.ndarray],
x: Union[np.ndarray, jnp.ndarray]) -> jnp.ndarray:
"""See base class. """
du_by_dx = self.derivative_function(x)
# du_by_dx: shape (time, par, ctrl)
# deriv_by_ctrl_amps: shape (time, func, ctrl)
# return: shape (time, func, par)

return jnp.einsum('imj,ikj->ikm', du_by_dx, deriv_by_ctrl_amps)
Loading
Loading