Skip to content

pywtk/iotc-yocto-python-sdk

 
 

Repository files navigation

IoT-Connect Yocto C SDK

This IoT-Connect connect layer only supports hardknott

The following details yocto layers designed to integrate the iotc Python SDK. The end result is an image with the SDK repo & a couple of sample python scripts installed. Once said image is flashed to a target, the sample scripts should successfully run & establish comms with an appropriately setup device on https://avnet.iotconnect.io/

Layers

There are 2 layers thus far: meta-iotc-python-sdk & meta-my-iotc-python-sdk-example.

meta-iotc-python-sdk

This layer draws in the various sources required to utilise the SDK. From a yocto perspective it largely serves to install the python SDK as a module into the image.

iotc-yocto-python-sdk$ tree meta-iotc-python-sdk/
meta-iotc-python-sdk/
├── conf
│   └── layer.conf
└── recipes-apps
    └── iotc-python-sdk
        ├── python3-iotconnect-sdk_0.1.bb
        └── python3-jsonlib_1.6.1.bb

meta-my-iotc-python-sdk-example

This layer provides an example of how a user might write a recipe suitable for their application. It contains a simple application that demonstrates telemetry and commands. Once installed on the image it can be started by logging in & executing /usr/bin/local/iotc/iotc-demo.py /path/to/config.json where config.json is a file that contains device authentication information and paths to where demo will read data from on the host device. It's expected that in the 1st instance a user would run this demo on their hardware after editing a sample config.json to reflect a device they've defined on avnet.iotconnect.io and sensor data particular to their hardware.

As developing a iotc application involves the use of private/secure data like keys/certificates and the user is expected to develop same application using SCM like git, it's worth taking a moment to be aware of risks of accidentally uploading private data to places it should not belong.

The directory eg-private-repo-data seeks to provide a safe space to place sensitive data like device keys etc for development purposes only. When the user installs the development version of the recipe (e.g. IMAGE_INSTALL += " iotc-demo-dev" in conf/local.conf) any files or directoires within eg-private-repo-data will be installed in the rootfs of the image. The .gitignore settings for this repo are also configured to prevent accidental upload of *.pem or *.crt files.

This approach allows the user to develop their solution conveniently, then when it's time to provide production builds, the result would be a clean installation awaiting first time configuration post image flash. E.g. An engineer would develop an application to the point of production release using iotc-demo-dev. The application that's released to production is built using the iotc-demo recipe. Hence there could be a high number (100?) of "blank" devices containing all the binaries necessary to perform just requiring provisioning with the config.jsons.

By adding the recipe to your image (e.g. IMAGE_INSTALL += " iotc-demo-dev" in conf/local.conf) you will via dependency include iotc-python-sdk from meta-iotc-python-sdk

iotc-yocto-python-sdk$ tree meta-my-iotc-python-sdk-example/
meta-my-iotc-python-sdk-example/
├── conf
│   └── layer.conf
└── recipes-apps
    └── iotc-telemetry-and-commands-demo        <--------- Recipe directory
        ├── files
        │   ├── eg-private-repo-data            <--------- Location for config & certificate data for development purposes.
        │   │   ├── configSymmrcKy.json
        │   │   └── configX509.json
        │   ├── model                           <--------- Directory of support sources
        │   │   ├── device_model.py
        │   │   ├── enums.py
        │   │   ├── json_device.py
        │   │   └── json_parser.py
        │   ├── scripts                         <--------- Directory of scripts that can be execute from iotconnect.io
        │   │   ├── control_led.sh
        │   │   └── get_mem_usage.sh
        │   ├── iotc-demo.service               <--------- Example systemd service (disabled by default)
        │   └── iotc-demo.py                    <--------- Top level python source.
        └── iotc-demo_git.bb                    <--------- Recipe

Commands

This demo supports commands to be sent from iotconnect.io to the device, both plain bash commands and commands execute through bash scripts are supported. bash scripts are placed in meta-my-iotc-python-sdk-example/recipes-apps/iotc-telemetry-and-commands-demo/scripts

by default, the scripts folder is installed in /usr/bin/local/iotc/scripts Make sure this path is added to the commands_list_path in your json configuration.

Two example scripts are included control_led.sh and get_mem_usage.sh, control_led.sh is used to show how a user may want to control an led on an embedded device. This is done by writing a 0/1 value to the led's path (update led_path inside control_led.sh), the output of the command is shown on the cloud dashboard, so it is recommended to use exit 1 and piping messages to stderr through >&2 echo so that error messages are sent to the dashboard correctly.

Adding more commands is possible by adding more scripts to the scripts folder.

You will need to modify your device template to add commands if you haven't already done so.

The first command you need to add is exec Command Name: exec Command: exec Parameter Required: Toggled On Receipt Required: Toggled On

Once added, this will allow you to execute bash commands on the device, executing commands from the scripts folder can be done by sending an exec command with the parameter being the script name and any arguments that the script needs, for example exec control_led.sh 1 would turn on the led.

If you are happy with the command, you create a new command to save time of writing out the full command every time it's run. Eg. Command Name: Control Led Command: control_led.sh <--- Name of the command bash script Parameter Required: Toggled On Receipt Required: Toggled On

Now you can send a command Control Led with parameters 0/1 and it will be interpreted as exec control_led.sh 0/1, making the commands more accessible to end users.

Configuration JSONs

One schema for a commerical iotc solution that uses a fleet of devices would be a single set of binaries that use individual config files to implement individual devices. This telemetry demo illustrates one way the user might achieve this.

In eg-private-repo-data are sample JSON files, these are explained in more detail in the drop-down section below. In summary:

By editing the duid, cpid, env, sdk_id and auth members of a config.json, the binary should have all the info required to successfully establish a connection to avnet.iotconnect.io with no code edits.

Within config.json there is an object called device which has a child called attributes. Inside is an array of attributes, the names are derived from the Device Template's attributes in avnet.iotconnect.io, the names must match for data to be correctly sent to the right place.

private_data is a path to the data on the device that is sent to the cloud.

private_data_type allows you to read the file in either ascii or binary mode, though ascii is recommended.

By editing these members you should be able to send data from your device to avnet.iotconnect.io again with no edits. (You may need to get your sensor data into a file, or it may already be in that form).

JSON Config More Info The config json provides a quick and easy way to provide a user's executable with the requisite device credentials for any connection and a convenient method of mapping sensors to iotc device attributes. The demo source provided will match an `attribute.name` to a path on the user's host where the relevant sensor data resides. It also indicates to the demo what format to expect the data at the path to be in.
{
    "sdk_ver": "2.1",
    "duid": "Your Device's name in https://avnet.iotconnect.io/device/1",
    "cpid": "'CPID' from https://avnet.iotconnect.io/key-vault",
    "env": "'Environment' from https://avnet.iotconnect.io/key-vault",
    "iotc_server_cert": "/etc/ssl/certs/DigiCert_Global_Root_G2.pem",
    "sdk_id": "'SDK Identities -> Language: Python **, Version: 1.0' from https://avnet.iotconnect.io/key-vault",
    "auth": {
      "auth_type": "IOTC_AT_X509",
      "params": {
        "client_key": "/path/to/device.key",
        "client_cert": "/path/to/DeviceCertificate.pem"
      }
    },
    "device": {
      "commands_list_path": "Path to folder containing all commands",
      "offline_storage": {
        "available_space_MB": 1,
        "file_count": 1
      },
      "attributes": [
        {
          "name": "power",
          "private_data": "/usr/bin/local/iotc/dummy_sensor_power",
          "private_data_type": "ascii"
        },
        {
          "name": "level",
          "private_data": "/usr/bin/local/iotc/dummy_sensor_level",
          "private_data_type": "ascii"
        }
      ]
    }
}

Say you have a device my-demo-device based on a template on avnet.iotconnect.io that looks like:

{
  "code": "my-template",
  "name": "My Template",
  "authType": 5,
  "isIotEdgeEnable": false,
  "attributes": [
    {
      "name": "Version",
      "type": "STRING",
      "description": null,
      "unit": null
    }
  ],
  "commands": [
  ],
  "messageVersion": "1.0",
  "msgCode": "7LIBCD6",
  "properties": {
    "description": null,
    "dataFrequency": "60",
    "fileSupport": false
  },
  "_meta": {
    "version": "2.0"
  }
}

You would first (copy &) edit config.json with relevant device connection details thusly:

{
    "sdk_ver": "2.1",
    "duid": "Your Device's name in https://avnet.iotconnect.io/device/1",

Would become:

{
    "sdk_ver": "2.1",
    "duid": "myDemoDevice",

Then with regard to mapping template attributes to paths, in order to map the Version attribute to a path on the device you would edit config.json to include:

      "attributes": [
        {
          "name": "Version",
          "private_data": "/proc/version",
          "private_data_type": "ascii"
        },

How to include layers

To include the layers within a yocto environment:

  1. check them out to the sources directory in your yocto environment.
  2. add them to conf/bblayers file in your build directory
  3. add the recipes to your build target e.g. add IMAGE_INSTALL += " iotc-demo-dev" to the bottom of build/conf/local.conf
  4. using the config.json files in eg-private-repo-data as a template, create your own config.json with details of the device you have setup on iotconnect.io.
  5. editing the same json as in the last step, edit the attributes section of the JSON so the name of the attribute maps to a path on your system where the relevant data can be found e.g. the path to the position data of an I2C accelerometer might be: /sys/bus/i2c/devices/1-0053/position.
  6. build with a bitbake call e.g. ./bitbake core-image-base
  7. Flash the resultant image to the device.
  8. Login into the device & run the command /usr/bin/local/iotc/iotc-demo.py /usr/local/iotc/config.json

Board specific examples can be found here

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 78.1%
  • BitBake 14.8%
  • Shell 7.1%