-
Notifications
You must be signed in to change notification settings - Fork 416
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b74f4b4
commit 67f6a06
Showing
9 changed files
with
839 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import pytest | ||
|
||
import torch | ||
from tests.test_utils import assert_expected, fixed_init_model | ||
from torchtune.modules.model_fusion import FusionEmbedding | ||
from torchtune.utils.seed import set_seed | ||
|
||
|
||
@pytest.fixture(autouse=True) | ||
def random(): | ||
set_seed(1) | ||
|
||
|
||
class TestFusionEmbedding: | ||
""" | ||
Class for testing our FusionEmbedding. | ||
""" | ||
|
||
@pytest.fixture | ||
def dim(self) -> int: | ||
return 2 | ||
|
||
@pytest.fixture | ||
def vocab_size(self) -> int: | ||
return 10 | ||
|
||
@pytest.fixture | ||
def fusion_vocab_size(self) -> int: | ||
return 5 | ||
|
||
@pytest.fixture | ||
def embed(self, dim, vocab_size, fusion_vocab_size) -> FusionEmbedding: | ||
embeds = FusionEmbedding( | ||
vocab_size=vocab_size, fusion_vocab_size=fusion_vocab_size, embed_dim=dim | ||
) | ||
fixed_init_model(embeds.embedding, min_val=0, max_val=0.5) | ||
fixed_init_model(embeds.fusion_embedding, min_val=0.51, max_val=1) | ||
return embeds | ||
|
||
@torch.no_grad() | ||
def test_forward(self, embed, vocab_size, fusion_vocab_size, dim): | ||
""" | ||
Test that the forward pass of the FusionEmbedding works as expected. | ||
""" | ||
tokens = torch.randint(0, vocab_size + fusion_vocab_size, (2, 10)) | ||
out = embed(tokens) | ||
|
||
assert out.shape == (2, 10, dim) | ||
assert_expected(out.mean(), torch.tensor(0.3409), atol=1e-3, rtol=1e-3) | ||
|
||
# Only new tokens, embeddings should be > 0.5 | ||
tokens = torch.randint(vocab_size, vocab_size + fusion_vocab_size, (2, 10)) | ||
out = embed(tokens) | ||
|
||
assert out.min() > 0.5 | ||
|
||
# Only old tokens, embeddings should be < 0.5 | ||
tokens = torch.randint(0, vocab_size, (2, 10)) | ||
out = embed(tokens) | ||
|
||
assert out.max() < 0.5 | ||
|
||
def test_fusion_params(self, embed): | ||
""" | ||
Test that the currect fusion params are returned. | ||
""" | ||
fusion_params = set(embed.fusion_params()) | ||
|
||
assert fusion_params == {"fusion_embedding.weight"} | ||
|
||
def test_get_and_load_state_dict(self, embed): | ||
""" | ||
Test that the state dict hooks work in removing the "layer" variable | ||
""" | ||
state_dict = embed.state_dict() | ||
state_keys = set(state_dict.keys()) | ||
|
||
assert state_keys == { | ||
"weight", | ||
"fusion_embedding.weight", | ||
} | ||
|
||
# Check that the state_dict can be loaded back into the model | ||
embed.load_state_dict(state_dict) |
121 changes: 121 additions & 0 deletions
121
tests/torchtune/modules/model_fusion/test_fusion_layer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import pytest | ||
|
||
import torch | ||
from tests.test_utils import assert_expected, fixed_init_model | ||
from torch import nn | ||
from torchtune.modules.model_fusion import FusionLayer | ||
from torchtune.utils.seed import set_seed | ||
|
||
|
||
@pytest.fixture(autouse=True) | ||
def random(): | ||
set_seed(1) | ||
|
||
|
||
class DummyLayer(nn.Module): | ||
def __init__(self, dim): | ||
super().__init__() | ||
self.linear = nn.Linear(dim, dim) | ||
self.cache_enabled = False | ||
|
||
def setup_cache(self, batch_size, dtype): | ||
self.cache_enabled = True | ||
|
||
def reset_cache(self): | ||
self.cache_enabled = False | ||
|
||
def forward(self, x): | ||
return self.linear(x) | ||
|
||
|
||
class TestFusionLayer: | ||
""" | ||
Class for testing our FusionLayer wrapper. | ||
""" | ||
|
||
@pytest.fixture | ||
def dim(self) -> int: | ||
return 2 | ||
|
||
@pytest.fixture | ||
def layer(self, dim) -> nn.Module: | ||
layer = DummyLayer(dim) | ||
fixed_init_model(layer, min_val=-0.1, max_val=0.1) | ||
return layer | ||
|
||
@pytest.fixture | ||
def fusion_layer(self, dim) -> nn.Module: | ||
layer = DummyLayer(dim) | ||
fixed_init_model(layer, min_val=-0.2, max_val=0.2) | ||
return layer | ||
|
||
@pytest.fixture | ||
def fused_layer(self, layer, fusion_layer) -> FusionLayer: | ||
return FusionLayer(layer, fusion_layer) | ||
|
||
@torch.no_grad() | ||
def test_forward(self, fused_layer, dim): | ||
""" | ||
Test that the forward pass of the FusionLayer works as expected. | ||
""" | ||
x = torch.rand((1, dim)) | ||
out = fused_layer(x) | ||
|
||
assert out.shape == (1, dim) | ||
assert_expected(out.mean(), torch.tensor(-0.0316), atol=1e-3, rtol=1e-3) | ||
|
||
@torch.no_grad() | ||
def test_fusion_last_forward(self, layer, fusion_layer, dim) -> nn.Module: | ||
""" | ||
Test the forward method with fusion_first=False. | ||
""" | ||
fused_layer = FusionLayer(layer, fusion_layer, fusion_first=False) | ||
|
||
x = torch.rand((1, dim)) | ||
out = fused_layer(x) | ||
|
||
assert out.shape == (1, dim) | ||
assert_expected(out.mean(), torch.tensor(-0.0816), atol=1e-3, rtol=1e-3) | ||
|
||
def test_get_and_load_state_dict(self, fused_layer): | ||
""" | ||
Test that the state dict hooks work in removing the "layer" variable | ||
""" | ||
state_dict = fused_layer.state_dict() | ||
state_keys = set(state_dict.keys()) | ||
|
||
assert state_keys == { | ||
"linear.weight", | ||
"linear.bias", | ||
"fusion_layer.linear.weight", | ||
"fusion_layer.linear.bias", | ||
} | ||
|
||
# Check that the state_dict can be loaded back into the model | ||
fused_layer.load_state_dict(state_dict) | ||
|
||
def test_fusion_params(self, fused_layer): | ||
""" | ||
Test that the currect fusion params are returned. | ||
""" | ||
fusion_params = set(fused_layer.fusion_params()) | ||
|
||
assert fusion_params == { | ||
"fusion_layer.linear.weight", | ||
"fusion_layer.linear.bias", | ||
} | ||
|
||
def test_setup_cache(self, fused_layer): | ||
""" | ||
Test that the cache methods works as expected. | ||
""" | ||
fused_layer.setup_cache(2, torch.float32) | ||
assert fused_layer.cache_enabled | ||
fused_layer.reset_cache() | ||
assert not fused_layer.cache_enabled |
147 changes: 147 additions & 0 deletions
147
tests/torchtune/modules/model_fusion/test_fusion_models.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import pytest | ||
|
||
import torch | ||
from tests.test_utils import assert_expected, fixed_init_model | ||
from torch import nn | ||
from torchtune.modules.model_fusion import DeepFusionModel | ||
from torchtune.utils.seed import set_seed | ||
|
||
|
||
@pytest.fixture(autouse=True) | ||
def random(): | ||
set_seed(1) | ||
|
||
|
||
class DummyModel(nn.Module): | ||
def __init__(self, dim, vocab_size): | ||
super().__init__() | ||
self.cache_enabled = False | ||
self.embed = nn.Embedding(vocab_size, dim) | ||
self.q = nn.Linear(dim, dim) | ||
self.k = nn.Linear(dim, dim) | ||
self.v = nn.Linear(dim, dim) | ||
self.output = nn.Linear(dim, vocab_size) | ||
|
||
def setup_caches(self, batch_size, dtype): | ||
self.cache_enabled = True | ||
|
||
def caches_are_enabled(self): | ||
return self.cache_enabled | ||
|
||
def reset_caches(self): | ||
self.cache_enabled = False | ||
|
||
def forward(self, tokens, mask, encoder_input, encoder_mask, input_pos): | ||
x = self.embed(tokens) | ||
if encoder_input is not None: | ||
q = self.q(x) | ||
k = self.k(encoder_input) | ||
v = self.v(encoder_input) | ||
x += nn.functional.scaled_dot_product_attention( | ||
q, k, v, attn_mask=encoder_mask | ||
) | ||
x = self.output(x) | ||
return x | ||
|
||
|
||
class TestDeepFusionModel: | ||
""" | ||
Class for testing our DeepFusionModel wrapper. | ||
""" | ||
|
||
@pytest.fixture | ||
def vocab_size(self) -> int: | ||
return 100 | ||
|
||
@pytest.fixture | ||
def dim(self) -> int: | ||
return 64 | ||
|
||
@pytest.fixture | ||
def encoder(self, dim, vocab_size) -> nn.Module: | ||
encoder = nn.Embedding(vocab_size, dim) | ||
fixed_init_model(encoder) | ||
return encoder | ||
|
||
@pytest.fixture | ||
def decoder(self, dim, vocab_size) -> nn.Module: | ||
decoder = DummyModel(dim, vocab_size) | ||
fixed_init_model(decoder, max_val=0.1) | ||
return decoder | ||
|
||
@pytest.fixture | ||
def fused_model(self, encoder, decoder) -> DeepFusionModel: | ||
model = DeepFusionModel( | ||
encoder=encoder, | ||
decoder=decoder, | ||
) | ||
return model | ||
|
||
@pytest.fixture | ||
def inputs(self, dim, vocab_size): | ||
batch_size = 2 | ||
seq_len = 10 | ||
tokens = torch.randint(0, vocab_size, (batch_size, seq_len)) | ||
encoder_input = {"input": torch.randint(0, vocab_size, (batch_size, seq_len))} | ||
encoder_mask = torch.randint(0, 2, (batch_size, seq_len, seq_len)).bool() | ||
input_pos = torch.Tensor([1]).int() | ||
return tokens, encoder_input, encoder_mask, input_pos | ||
|
||
@torch.no_grad() | ||
def test_forward(self, fused_model, inputs, vocab_size): | ||
""" | ||
Test that the forward pass of the DeepFusionModel works as expected. | ||
""" | ||
tokens, encoder_input, encoder_mask, _ = inputs | ||
batch_size, seq_len = tokens.shape | ||
out = fused_model( | ||
tokens, encoder_input=encoder_input, encoder_mask=encoder_mask | ||
) | ||
|
||
assert out.shape == (batch_size, seq_len, vocab_size) | ||
assert_expected(out.mean(), torch.tensor(8.5584), atol=1e-3, rtol=1e-3) | ||
|
||
@torch.no_grad() | ||
def test_forward_no_encoding(self, fused_model, inputs, vocab_size): | ||
""" | ||
Test that the forward pass of the DeepFusionModel with no encoder input. | ||
""" | ||
tokens, *_ = inputs | ||
batch_size, seq_len = tokens.shape | ||
out = fused_model(tokens) | ||
|
||
assert out.shape == (batch_size, seq_len, vocab_size) | ||
assert_expected(out.mean(), torch.tensor(0.2271), atol=1e-3, rtol=1e-3) | ||
|
||
@torch.no_grad() | ||
def test_decoding_forward(self, fused_model, inputs, vocab_size): | ||
""" | ||
Test that the forward pass of the DeepFusionModel works during decoding. | ||
""" | ||
tokens, encoder_input, encoder_mask, input_pos = inputs | ||
tokens = tokens[:, input_pos] | ||
batch_size, seq_len = tokens.shape | ||
out = fused_model( | ||
tokens, | ||
encoder_input=encoder_input, | ||
encoder_mask=encoder_mask, | ||
input_pos=input_pos, | ||
) | ||
|
||
assert out.shape == (batch_size, seq_len, vocab_size) | ||
assert_expected(out.mean(), torch.tensor(9.0072), atol=1e-3, rtol=1e-3) | ||
|
||
def test_setup_cache(self, fused_model): | ||
""" | ||
Test that the cache methods works as expected. | ||
""" | ||
fused_model.setup_caches(2, torch.float32) | ||
assert fused_model.caches_are_enabled() | ||
fused_model.reset_caches() | ||
assert not fused_model.caches_are_enabled() |
Oops, something went wrong.