Skip to content

Commit

Permalink
Update rainfarm.py (#311)
Browse files Browse the repository at this point in the history
  • Loading branch information
simonbeylat authored Jun 10, 2024
1 parent fc446bc commit 10416e4
Show file tree
Hide file tree
Showing 3 changed files with 343 additions and 53 deletions.
22 changes: 22 additions & 0 deletions doc/source/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,17 @@ @ARTICLE{CRS2004
DOI = "10.1017/S1350482704001239"
}

@ARTICLE{DOnofrio2014,
TITLE = "Stochastic rainfall downscaling of climate models",
AUTHOR = "D'Onofrio, D and Palazzi, E and von Hardenberg, J and Provenzale, A and Calmanti, S",
JOURNAL = "J. Hydrometeorol.",
PUVLISHER = "American Meteorological Society",
VOLUME = 15,
NUMBER = 2,
PAGES = "830--843",
YEAR = 2014,
}

@ARTICLE{EWWM2013,
AUTHOR = "E. Ebert and L. Wilson and A. Weigel and M. Mittermaier and P. Nurmi and P. Gill and M. Göber and S. Joslyn and B. Brown and T. Fowler and A. Watkins",
TITLE = "Progress and challenges in forecast verification",
Expand Down Expand Up @@ -306,6 +317,17 @@ @ARTICLE{SPN2013
DOI = "10.1002/wrcr.20536"
}

@Article{Terzago2018,
AUTHOR = "Terzago, S. and Palazzi, E. and von Hardenberg, J.",
TITLE = "Stochastic downscaling of precipitation in complex orography: a simple method to reproduce a realistic fine-scale climatology",
JOURNAL = "Natural Hazards and Earth System Sciences",
VOLUME = 18,
YEAR = 2018,
NUMBER = 11,
PAGES = "2825--2840",
DOI = "10.5194/nhess-18-2825-2018"
}

@ARTICLE{TRT2004,
AUTHOR = "A. M. Hering and C. Morel and G. Galli and P. Ambrosetti and M. Boscacci",
TITLE = "Nowcasting thunderstorms in the Alpine Region using a radar based adaptive thresholding scheme",
Expand Down
289 changes: 243 additions & 46 deletions pysteps/downscaling/rainfarm.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
============================
Implementation of the RainFARM stochastic downscaling method as described in
:cite:`Rebora2006`.
:cite:`Rebora2006` and :cite:`DOnofrio2014`.
RainFARM is a downscaling algorithm for rainfall fields developed by Rebora et
al. (2006). The method can represent the realistic small-scale variability of the
Expand All @@ -20,38 +20,211 @@
import warnings

import numpy as np
from scipy.ndimage import convolve
from scipy.signal import convolve
from pysteps.utils.spectral import rapsd
from pysteps.utils.dimension import aggregate_fields


def _gaussianize(precip):
"""
Gaussianize field using rank ordering as in :cite:`DOnofrio2014`.
"""
m, n = np.shape(precip)
nn = m * n
ii = np.argsort(precip.reshape(nn))
precip_gaussianize = np.zeros(nn)
precip_gaussianize[ii] = sorted(np.random.normal(0, 1, nn))
precip_gaussianize = precip_gaussianize.reshape(m, n)
sd = np.std(precip_gaussianize)
if sd == 0:
sd = 1
return precip_gaussianize / sd


def _compute_freq_array(array, ds_factor=1):
"""
Compute the frequency array following a given downscaling factor.
"""
freq_i = np.fft.fftfreq(array.shape[0] * ds_factor, d=1 / ds_factor)
freq_j = np.fft.fftfreq(array.shape[1] * ds_factor, d=1 / ds_factor)
freq_sqr = freq_i[:, None] ** 2 + freq_j[None, :] ** 2
return np.sqrt(freq_sqr)


def _log_slope(log_k, log_power_spectrum):
"""
Calculate the log-slope of the power spectrum given an array of logarithmic wavenumbers
and an array of logarithmic power spectrum values.
"""
lk_min = log_k.min()
lk_max = log_k.max()
lk_range = lk_max - lk_min
lk_min += (1 / 6) * lk_range
lk_max -= (1 / 6) * lk_range

selected = (lk_min <= log_k) & (log_k <= lk_max)
lk_sel = log_k[selected]
ps_sel = log_power_spectrum[selected]
alpha = np.polyfit(lk_sel, ps_sel, 1)[0]
alpha = -alpha
return alpha


def _estimate_alpha(array, k):
"""
Estimate the alpha parameter using the power spectrum of the input array.
"""
fp = np.fft.fft2(array)
fp_abs = abs(fp)
log_power_spectrum = np.log(fp_abs**2)
valid = (k != 0) & np.isfinite(log_power_spectrum)
alpha = _log_slope(np.log(k[valid]), log_power_spectrum[valid])
return alpha


def _balanced_spatial_average(x, k):
ones = np.ones_like(x)
return convolve(x, k) / convolve(ones, k)
def _compute_noise_field(freq_array_highres, alpha):
"""
Compute a field of correlated noise field using the given frequency array and alpha
value.
"""
white_noise_field = np.random.rand(*freq_array_highres.shape)
white_noise_field_complex = np.exp(complex(0, 1) * 2 * np.pi * white_noise_field)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
noise_field_complex = white_noise_field_complex * np.sqrt(
freq_array_highres**-alpha
)
noise_field_complex[0, 0] = 0
return np.fft.ifft2(noise_field_complex).real


def downscale(precip, ds_factor, alpha=None, threshold=None, return_alpha=False):
def _apply_spectral_fusion(
array_low, array_high, freq_array_low, freq_array_high, ds_factor
):
"""
Downscale a rainfall field by increasing its spatial resolution by
a positive integer factor.
Apply spectral fusion to merge two arrays in the frequency domain.
"""

# Validate inputs
if array_low.shape != freq_array_low.shape:
raise ValueError("Shape of array_low must match shape of freq_array_low.")
if array_high.shape != freq_array_high.shape:
raise ValueError("Shape of array_high must match shape of freq_array_high.")

nax, _ = np.shape(array_low)
nx, _ = np.shape(array_high)
k0 = nax // 2

# Calculate power spectral density at specific frequency
def compute_psd(array, fft_size):
return rapsd(array, fft_method=np.fft)[k0 - 1] * fft_size**2

psd_low = compute_psd(array_low, nax)
psd_high = compute_psd(array_high, nx)

# Normalize high-resolution array
normalization_factor = np.sqrt(psd_low / psd_high)
array_high *= normalization_factor

# Perform FFT on both arrays
fft_low = np.fft.fft2(array_low)
fft_high = np.fft.fft2(array_high)

# Initialize the merged FFT array with low-resolution data
fft_merged = np.zeros_like(fft_high, dtype=np.complex128)
fft_merged[0:k0, 0:k0] = fft_low[0:k0, 0:k0]
fft_merged[nx - k0 : nx, 0:k0] = fft_low[k0 : 2 * k0, 0:k0]
fft_merged[0:k0, nx - k0 : nx] = fft_low[0:k0, k0 : 2 * k0]
fft_merged[nx - k0 : nx, nx - k0 : nx] = fft_low[k0 : 2 * k0, k0 : 2 * k0]

fft_merged[k0, 0] = np.conj(fft_merged[nx - k0, 0])
fft_merged[0, k0] = np.conj(fft_merged[0, nx - k0])

# Compute frequency arrays
freq_i = np.fft.fftfreq(nx, d=1 / ds_factor)
freq_i = np.tile(freq_i, (nx, 1))
freq_j = freq_i.T

# Compute frequency domain adjustment
ddx = np.pi * (1 / nax - 1 / nx) / np.abs(freq_i[0, 1] - freq_i[0, 0])
freq_squared_high = freq_array_high**2
freq_squared_low_center = freq_array_low[k0, k0] ** 2

# Fuse in the frequency domain
mask_high = freq_squared_high > freq_squared_low_center
mask_low = ~mask_high
fft_merged = fft_high * mask_high + fft_merged * mask_low * np.exp(
-1j * ddx * freq_i - 1j * ddx * freq_j
)

# Inverse FFT to obtain the merged array in the spatial domain
merged = np.real(np.fft.ifftn(fft_merged)) / fft_merged.size

return merged


def _compute_kernel_radius(ds_factor):
return int(round(ds_factor / np.sqrt(np.pi)))


def _make_tophat_kernel(ds_factor):
"""Compute 2d uniform (tophat) kernel"""
radius = _compute_kernel_radius(ds_factor)
(mx, my) = np.mgrid[-radius : radius + 0.01, -radius : radius + 0.01]
tophat = ((mx**2 + my**2) <= radius**2).astype(float)
return tophat / tophat.sum()


def _make_gaussian_kernel(ds_factor):
"""
Compute 2d gaussian kernel
ref: https://github.com/scipy/scipy/blob/de80faf9d3480b9dbb9b888568b64499e0e70c19/scipy/ndimage/_filters.py#L179
the smoothing sigma has width half a large pixel
"""
radius = _compute_kernel_radius(ds_factor)
sigma = ds_factor / 2
sigma2 = sigma * sigma
x = np.arange(-radius, radius + 1)
kern1d = np.exp(-0.5 / sigma2 * x**2)
kern2d = np.outer(kern1d, kern1d)
return kern2d / kern2d.sum()


def _balanced_spatial_average(array, kernel):
"""
Compute the balanced spatial average of an array using a given kernel while handling
missing or invalid values.
"""
array = array.copy()
mask_valid = np.isfinite(array)
array[~mask_valid] = 0.0
array_conv = convolve(array, kernel, mode="same")
array_conv /= convolve(mask_valid, kernel, mode="same")
array_conv[~mask_valid] = np.nan
return array_conv


_make_kernel = dict()
_make_kernel["gaussian"] = _make_gaussian_kernel
_make_kernel["tophat"] = _make_tophat_kernel
_make_kernel["uniform"] = _make_tophat_kernel


def downscale(
precip,
ds_factor,
alpha=None,
threshold=None,
return_alpha=False,
kernel_type=None,
spectral_fusion=False,
):
"""
Downscale a rainfall field by increasing its spatial resolution by a positive
integer factor.
Parameters
----------
precip: array-like
precip: array_like
Array of shape (m, n) containing the input field.
The input is expected to contain rain rate values.
All values are required to be finite.
Expand All @@ -65,10 +238,14 @@ def downscale(precip, ds_factor, alpha=None, threshold=None, return_alpha=False)
Set all values lower than the threshold to zero.
return_alpha: bool, optional
Whether to return the estimated spectral slope ``alpha``.
kernel_type: {None, "gaussian", "uniform", "tophat"}
The name of the smoothing operator. If None no smoothing is applied.
spectral_fusion: bool, optional
Whether to apply spectral merging as in :cite:`DOnofrio2014`.
Returns
-------
r: array-like
precip_highres: ndarray
Array of shape (m * ds_factor, n * ds_factor) containing
the downscaled field.
alpha: float
Expand All @@ -79,54 +256,74 @@ def downscale(precip, ds_factor, alpha=None, threshold=None, return_alpha=False)
Currently, the pysteps implementation of RainFARM only covers spatial downscaling.
That is, it can improve the spatial resolution of a rainfall field. However, unlike
the original algorithm from Rebora et al. (2006), it cannot downscale the temporal
dimension.
dimension. It implements spectral merging from D'Onofrio et al. (2014).
References
----------
:cite:`Rebora2006`
:cite:`DOnofrio2014`
"""

ki = np.fft.fftfreq(precip.shape[0])
kj = np.fft.fftfreq(precip.shape[1])
k_sqr = ki[:, None] ** 2 + kj[None, :] ** 2
k = np.sqrt(k_sqr)
# Validate inputs
if not np.isfinite(precip).all():
raise ValueError("All values in 'precip' must be finite.")
if not isinstance(ds_factor, int) or ds_factor <= 0:
raise ValueError("'ds_factor' must be a positive integer.")

# Preprocess the input field if spectral fusion is enabled
precip_transformed = _gaussianize(precip) if spectral_fusion else precip

ki_ds = np.fft.fftfreq(precip.shape[0] * ds_factor, d=1 / ds_factor)
kj_ds = np.fft.fftfreq(precip.shape[1] * ds_factor, d=1 / ds_factor)
k_ds_sqr = ki_ds[:, None] ** 2 + kj_ds[None, :] ** 2
k_ds = np.sqrt(k_ds_sqr)
# Compute frequency arrays for the original and high-resolution fields
freq_array = _compute_freq_array(precip_transformed)
freq_array_highres = _compute_freq_array(precip_transformed, ds_factor)

# Estimate spectral slope alpha if not provided
if alpha is None:
fp = np.fft.fft2(precip)
fp_abs = abs(fp)
log_power_spectrum = np.log(fp_abs**2)
valid = (k != 0) & np.isfinite(log_power_spectrum)
alpha = _log_slope(np.log(k[valid]), log_power_spectrum[valid])
alpha = _estimate_alpha(precip_transformed, freq_array)

fg = np.exp(complex(0, 1) * 2 * np.pi * np.random.rand(*k_ds.shape))
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fg *= np.sqrt(k_ds_sqr ** (-alpha / 2))
fg[0, 0] = 0
g = np.fft.ifft2(fg).real
g /= g.std()
r = np.exp(g)

P_u = np.repeat(np.repeat(precip, ds_factor, axis=0), ds_factor, axis=1)
rad = int(round(ds_factor / np.sqrt(np.pi)))
(mx, my) = np.mgrid[-rad : rad + 0.01, -rad : rad + 0.01]
tophat = ((mx**2 + my**2) <= rad**2).astype(float)
tophat /= tophat.sum()

P_agg = _balanced_spatial_average(P_u, tophat)
r_agg = _balanced_spatial_average(r, tophat)
r *= P_agg / r_agg
# Generate noise field
noise_field = _compute_noise_field(freq_array_highres, alpha)

# Apply spectral fusion if enabled
if spectral_fusion:
noise_field /= noise_field.shape[0] ** 2
noise_field = np.exp(noise_field)
noise_field = _apply_spectral_fusion(
precip_transformed, noise_field, freq_array, freq_array_highres, ds_factor
)

# Normalize and exponentiate the noise field
noise_field /= noise_field.std()
noise_field = np.exp(noise_field)

# Aggregate the noise field to low resolution
noise_lowres = aggregate_fields(noise_field, ds_factor, axis=(0, 1))

# Expand input and noise fields to high resolution
precip_expanded = np.kron(precip, np.ones((ds_factor, ds_factor)))
noise_lowres_expanded = np.kron(noise_lowres, np.ones((ds_factor, ds_factor)))

# Apply smoothing if a kernel type is provided
if kernel_type:
if kernel_type not in _make_kernel:
raise ValueError(
f"kernel type '{kernel_type}' is invalid, available kernels: {list(_make_kernel)}"
)
kernel = _make_kernel[kernel_type](ds_factor)
precip_expanded = _balanced_spatial_average(precip_expanded, kernel)
noise_lowres_expanded = _balanced_spatial_average(noise_lowres_expanded, kernel)

# Normalize the high-res precipitation field by the low-res noise field
norm_k0 = precip_expanded / noise_lowres_expanded
precip_highres = noise_field * norm_k0

# Apply thresholding if specified
if threshold is not None:
r[r < threshold] = 0
precip_highres[precip_highres < threshold] = 0

# Return the downscaled field and optionally the spectral slope alpha
if return_alpha:
return r, alpha
return precip_highres, alpha

return r
return precip_highres
Loading

0 comments on commit 10416e4

Please sign in to comment.