forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Max de Bayser <[email protected]>
- Loading branch information
1 parent
faa29eb
commit db56b52
Showing
12 changed files
with
305 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
# -*- coding: utf-8 -*- | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import PretrainedConfig | ||
|
||
from vllm.attention import AttentionMetadata | ||
from vllm.config import CacheConfig | ||
from vllm.distributed import get_pp_group | ||
from vllm.model_executor.layers.layernorm import RMSNorm | ||
from vllm.model_executor.layers.quantization import QuantizationConfig | ||
from vllm.model_executor.models.internlm2 import (InternLM2Attention, | ||
InternLM2ForCausalLM, | ||
InternLM2MLP, InternLM2Model) | ||
from vllm.sequence import IntermediateTensors | ||
|
||
from .utils import make_layers | ||
|
||
|
||
class InternLM2VEDecoderLayer(nn.Module): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
cache_config: Optional[CacheConfig] = None, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
) -> None: | ||
super().__init__() | ||
self.hidden_size = config.hidden_size | ||
rope_theta = getattr(config, "rope_theta", 10000) | ||
rope_scaling = getattr(config, "rope_scaling", None) | ||
max_position_embeddings = getattr(config, "max_position_embeddings", | ||
8192) | ||
self.attention = InternLM2Attention( | ||
hidden_size=self.hidden_size, | ||
num_heads=config.num_attention_heads, | ||
num_kv_heads=config.num_key_value_heads, | ||
rope_theta=rope_theta, | ||
rope_scaling=rope_scaling, | ||
max_position_embeddings=max_position_embeddings, | ||
cache_config=cache_config, | ||
quant_config=quant_config, | ||
) | ||
self.feed_forward = InternLM2MLP( | ||
hidden_size=self.hidden_size, | ||
intermediate_size=config.intermediate_size, | ||
hidden_act=config.hidden_act, | ||
quant_config=quant_config, | ||
) | ||
self.feed_forward_ve = InternLM2MLP( | ||
hidden_size=self.hidden_size, | ||
intermediate_size=config.intermediate_size, | ||
hidden_act=config.hidden_act, | ||
quant_config=quant_config, | ||
) | ||
self.attention_norm = RMSNorm(config.hidden_size, | ||
eps=config.rms_norm_eps) | ||
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
|
||
def forward( | ||
self, | ||
positions: torch.Tensor, | ||
hidden_states: torch.Tensor, | ||
kv_cache: torch.Tensor, | ||
attn_metadata: AttentionMetadata, | ||
residual: Optional[torch.Tensor], | ||
visual_token_mask: Optional[torch.Tensor] = None, | ||
) -> Tuple[torch.Tensor, torch.Tensor]: | ||
# Self Attention | ||
if residual is None: | ||
residual = hidden_states | ||
hidden_states = self.attention_norm(hidden_states) | ||
else: | ||
hidden_states, residual = self.attention_norm( | ||
hidden_states, residual) | ||
hidden_states = self.attention( | ||
positions=positions, | ||
hidden_states=hidden_states, | ||
kv_cache=kv_cache, | ||
attn_metadata=attn_metadata, | ||
) | ||
|
||
# Fully Connected | ||
hidden_states, residual = self.ffn_norm(hidden_states, residual) | ||
if visual_token_mask is not None and visual_token_mask.any(): | ||
visual_token_mask = visual_token_mask.repeat( | ||
1, self.hidden_size).bool() | ||
text_token_mask = ~visual_token_mask | ||
hidden_states[visual_token_mask] = self.feed_forward_ve( | ||
hidden_states[visual_token_mask].reshape( | ||
-1, self.hidden_size)).flatten() | ||
if text_token_mask.any(): | ||
hidden_states[text_token_mask] = self.feed_forward( | ||
hidden_states[text_token_mask].reshape( | ||
-1, self.hidden_size)).flatten() | ||
else: | ||
hidden_states = self.feed_forward(hidden_states) | ||
return hidden_states, residual | ||
|
||
|
||
class InternLM2VEModel(InternLM2Model): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
cache_config: Optional[CacheConfig] = None, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
prefix: str = "", | ||
) -> None: | ||
super().__init__(config, cache_config, quant_config) | ||
self.start_layer, self.end_layer, self.layers = make_layers( | ||
config.num_hidden_layers, | ||
lambda prefix: InternLM2VEDecoderLayer(config, cache_config, | ||
quant_config), | ||
prefix=f"{prefix}.layers") | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
kv_caches: List[torch.Tensor], | ||
attn_metadata: AttentionMetadata, | ||
intermediate_tensors: Optional[IntermediateTensors] = None, | ||
inputs_embeds: Optional[torch.Tensor] = None, | ||
visual_token_mask: Optional[torch.Tensor] = None, | ||
) -> Union[torch.Tensor, IntermediateTensors]: | ||
if get_pp_group().is_first_rank: | ||
if inputs_embeds is not None: | ||
hidden_states = inputs_embeds | ||
else: | ||
hidden_states = self.tok_embeddings(input_ids) | ||
residual = None | ||
else: | ||
assert intermediate_tensors is not None | ||
hidden_states = intermediate_tensors["hidden_states"] | ||
residual = intermediate_tensors["residual"] | ||
for i in range(self.start_layer, self.end_layer): | ||
layer = self.layers[i] | ||
hidden_states, residual = layer( | ||
positions, | ||
hidden_states, | ||
kv_caches[i - self.start_layer], | ||
attn_metadata, | ||
residual, | ||
visual_token_mask=visual_token_mask, | ||
) | ||
if not get_pp_group().is_last_rank: | ||
return IntermediateTensors({ | ||
"hidden_states": hidden_states, | ||
"residual": residual | ||
}) | ||
hidden_states, _ = self.norm(hidden_states, residual) | ||
return hidden_states | ||
|
||
|
||
class InternLM2VEForCausalLM(InternLM2ForCausalLM): | ||
|
||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
cache_config: Optional[CacheConfig] = None, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
) -> None: | ||
super().__init__(config, cache_config, quant_config) | ||
self.model = InternLM2VEModel(config, cache_config, quant_config) |
Oops, something went wrong.