Skip to content

Commit

Permalink
Merge pull request #99 from atgehrhardt/main
Browse files Browse the repository at this point in the history
Ollama Dynamic Vision Pipeline
  • Loading branch information
tjbck authored Jun 19, 2024
2 parents 53ec4ae + c360d2b commit df2124e
Showing 1 changed file with 91 additions and 0 deletions.
91 changes: 91 additions & 0 deletions examples/filters/dynamic_ollama_vision_filter_pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
"""
title: Ollama Dynamic Vision Pipeline
author: Andrew Tait Gehrhardt
date: 2024-06-18
version: 1.0
license: MIT
description: A pipeline for dynamically processing images when current model is a text only model
requirements: pydantic, aiohttp
"""

from typing import List, Optional
from pydantic import BaseModel
import json
import aiohttp
from utils.pipelines.main import get_last_user_message

class Pipeline:
class Valves(BaseModel):
pipelines: List[str] = []
priority: int = 0
vision_model: str = "llava"
ollama_base_url: str = ""
model_to_override: str = ""

def __init__(self):
self.type = "filter"
self.name = "Interception Filter"
self.valves = self.Valves(
**{
"pipelines": ["*"], # Connect to all pipelines
}
)

async def on_startup(self):
print(f"on_startup:{__name__}")
pass

async def on_shutdown(self):
print(f"on_shutdown:{__name__}")
pass

async def process_images_with_llava(self, images: List[str], content: str, vision_model: str, ollama_base_url: str) -> str:
url = f"{ollama_base_url}/api/chat"
payload = {
"model": vision_model,
"messages": [
{
"role": "user",
"content": content,
"images": images
}
]
}

async with aiohttp.ClientSession() as session:
async with session.post(url, json=payload) as response:
if response.status == 200:
content = []
async for line in response.content:
data = json.loads(line)
content.append(data.get("message", {}).get("content", ""))
return "".join(content)
else:
print(f"Failed to process images with LLava, status code: {response.status}")
return ""

async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
print(f"pipe:{__name__}")

images = []

# Ensure the body is a dictionary
if isinstance(body, str):
body = json.loads(body)

model = body.get("model", "")

# Get the content of the most recent message
user_message = get_last_user_message(body["messages"])

if model in self.valves.model_to_override:
messages = body.get("messages", [])
for message in messages:
if "images" in message:
images.extend(message["images"])
raw_llava_response = await self.process_images_with_llava(images, user_message, self.valves.vision_model,self.valves.ollama_base_url)
llava_response = f"REPEAT THIS BACK: {raw_llava_response}"
message["content"] = llava_response
message.pop("images", None) # This will safely remove the 'images' key if it exists

return body

0 comments on commit df2124e

Please sign in to comment.