These source code that summarizes the codes that I have gathered while attending Professor Sungho Kim's class (Yeungnam University, Digital Image Processing class) and my personal studies.
all of index have matlab code but some index have no result
1. Install Matlab
1.1 Basic Matrix
2. Image resolution
2.1. Image Resize with Interpolation
3. Blob Labeling
3.1. Noise Reduction
4. Intensity Transform
4.1 Histogram equalization
5. Spatial Filtering
5.1. Spatial Sharpening
6. Furier Series
6.1. Aliasing in Image Resizing
6.2 2-D DFT Fourier Spectrum
6.3 Phase Angles and The Reconstructed
6.4. Frequency Analysis
6.5. Steps for Filtering in the Frequency Domain
6.6. Image Low Pass Filter & High Pass Filter
7. Deep learning
- Install Matlab
- read Image and show
Image=imread('want_to_read.jpg');
imshow(Image);
title('want_to_read','fontsize',16);
%builtin function
Image=imread('rice.png'); %load an gray image
Image_NN=imresize(Image,0.4,'nearest');
Image_BL=imresize(Image,0.4,'bilinear');
Image_BC=imresize(Image,0.4,'bicubic');
subplot(1,4,1); imshow(Image); title('origin');
subplot(1,4,2); imshow(Image_NN); title('NN');
subplot(1,4,3); imshow(Image_BL); title('bilinear');
subplot(1,4,4); imshow(Image_BC); title('bicubic');
Result |
---|
my impletation(resize func) is in directory source_code/myResizeNN or myResizeBil
Result 1 |
---|
Result 2 |
---|
Result |
---|
Result 1 |
---|
Result 2 |
---|
Result 3 |
---|
Logic | Input |
---|---|
- Laplacian kernel
K=[0 1 0;
1 -4 1;
0 1 0]
before shapen | Result 1 |
---|---|
- Laplacian kernel
K=[1 1 1;
1 -8 1;
1 1 1]
before shapen | Result 2 |
---|---|
- Gaussian kernel
K=fspecial('gaussian',[5,5],1)
Kernel | Result 3 |
---|---|
- make sine waves
- combine each sine waves
- sine waves to square waves
- same subsampling
Input | Output |
---|---|
Result |
---|
my implement code: doesn't exist. The report exists. but upload the correct code
Result |
---|
- Given an input image f(x,y) of size MxN, obtain thepadding parameters P and Q : Output1
- Form a padded image, fp(x,y) of size PxQ by appending the necessary number of zeros to f(x,y): Output2
- Multiply fp(x,y) by (-1)x+y to center its transform: Output3
Input | Output1 | Output2 | Output3 |
---|---|---|---|
- Compute the DFT, F(u,v) of the image from step 3: Output4
- Generate a real, symmetric filter function*, H(u,v), of size PxQ with center at coordinates (P/2, Q/2): Output5
- Form the product G(u,v) = H(u,v)F(u,v) using array multiplication: Output6
- Obtain the processed image : Output7
Output4 | Output5 | Output6 | Output7 |
---|---|---|---|
- Obtain the final processed result, g(x,y), by extracting the MxN region from the top, left quadrant of gp(x,y)
- Cut-off Frequency 200: Output8
- Cut-off Frequency 100: Output9
- Cut-off Frequency 5: Output10
Output8 | Output9 | Output10 |
---|---|---|
- Space domain filtering(Output11) vs Frequency domain filtering(Output12)
Output11 | Output12 |
---|---|
- Exercise 1: Object Detection
- Exercise 2: Regression
Estimating real number given vector data
- Exercise 3: Transfer Learning using Alexnet
Introduce my project Demo video --> [link]
searching at matlab, nanhee kim's and sungho kim class
myimg: nanhee kim
others: matlab and prof.sungho kim
Nanhee Kim / @nh9k