Skip to content

Create ๐Ÿ”ฅ videos with Stable Diffusion by exploring the latent space and morphing between text prompts

License

Notifications You must be signed in to change notification settings

nateraw/stable-diffusion-videos

Repository files navigation

stable-diffusion-videos

Try it yourself in Colab: Open In Colab

Example - morphing between "blueberry spaghetti" and "strawberry spaghetti"

berry_good_spaghetti.2.mp4

Installation

pip install stable_diffusion_videos

Usage

Check out the examples folder for example scripts ๐Ÿ‘€

Making Videos

Note: For Apple M1 architecture, use torch.float32 instead, as torch.float16 is not available on MPS.

from stable_diffusion_videos import StableDiffusionWalkPipeline
import torch

pipeline = StableDiffusionWalkPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    torch_dtype=torch.float16,
).to("cuda")

video_path = pipeline.walk(
    prompts=['a cat', 'a dog'],
    seeds=[42, 1337],
    num_interpolation_steps=3,
    height=512,  # use multiples of 64 if > 512. Multiples of 8 if < 512.
    width=512,   # use multiples of 64 if > 512. Multiples of 8 if < 512.
    output_dir='dreams',        # Where images/videos will be saved
    name='animals_test',        # Subdirectory of output_dir where images/videos will be saved
    guidance_scale=8.5,         # Higher adheres to prompt more, lower lets model take the wheel
    num_inference_steps=50,     # Number of diffusion steps per image generated. 50 is good default
)

Making Music Videos

New! Music can be added to the video by providing a path to an audio file. The audio will inform the rate of interpolation so the videos move to the beat ๐ŸŽถ

from stable_diffusion_videos import StableDiffusionWalkPipeline
import torch

pipeline = StableDiffusionWalkPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    torch_dtype=torch.float16,
).to("cuda")

# Seconds in the song.
audio_offsets = [146, 148]  # [Start, end]
fps = 30  # Use lower values for testing (5 or 10), higher values for better quality (30 or 60)

# Convert seconds to frames
num_interpolation_steps = [(b-a) * fps for a, b in zip(audio_offsets, audio_offsets[1:])]

video_path = pipeline.walk(
    prompts=['a cat', 'a dog'],
    seeds=[42, 1337],
    num_interpolation_steps=num_interpolation_steps,
    audio_filepath='audio.mp3',
    audio_start_sec=audio_offsets[0],
    fps=fps,
    height=512,  # use multiples of 64 if > 512. Multiples of 8 if < 512.
    width=512,   # use multiples of 64 if > 512. Multiples of 8 if < 512.
    output_dir='dreams',        # Where images/videos will be saved
    guidance_scale=7.5,         # Higher adheres to prompt more, lower lets model take the wheel
    num_inference_steps=50,     # Number of diffusion steps per image generated. 50 is good default
)

Using the UI

from stable_diffusion_videos import StableDiffusionWalkPipeline, Interface
import torch

pipeline = StableDiffusionWalkPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    torch_dtype=torch.float16,
).to("cuda")

interface = Interface(pipeline)
interface.launch()

Credits

This work built off of a script shared by @karpathy. The script was modified to this gist, which was then updated/modified to this repo.

Contributing

You can file any issues/feature requests here

Enjoy ๐Ÿค—