Skip to content

Approximating Wasserstein distances with PyTorch

License

Notifications You must be signed in to change notification settings

lmanan/wassdistance

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Approximating Wasserstein distances with PyTorch

Repository for the blog post on Wasserstein distances.

Update (July, 2019): I'm glad to see many people have found this post useful. Its main purpose is to introduce and illustrate the problem. To apply these ideas to large datasets and train on GPU, I highly recommend the GeomLoss library, which is optimized for this.

Instructions

Create a conda environment with all the requirements (edit environment.yml if you want to change the name of the environment):

conda env create -f environment.yml

Activate the environment

source activate pytorch

Open the notebook to reproduce the results:

jupyter notebook

About

Approximating Wasserstein distances with PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.0%
  • Python 2.0%