Pro-Scraper Frontend (Repo) | Pro-Scraper Hosted/API (Repo)
- Clone repository to local machine
- install python, pip & mysql
- install python requirements.txt
- install mysql server ("winget install -e Oracle.MySQL" in terminal | or manual install from mysql website)
- setup mysql server, create user (make sure to grant all privileges | or use root user instead)
- sometimes you are required to set current use db (Set current database: "
use <database_name>;
") - add user & mysql credentials to config.py
- start mysql server
- run python3 app.py
- open browser and go to http://localhost:5000
- Try scraping something. The more you scrape the more optimized it gets over time.
- you dont have to export data as csv, you can use the API to get data in JSON format or even better use the Database directly to fetch data.locally.
- fiddle around and have fun !
-
URL
/api/search
/api/quick_search
/api/deep_search
-
Method:
-
GET
-
POST
-
URL Params
- Required:
searchQuery=[string]
- Required:
-
Data Params
-
searchQuery=[string]
-
Success Response:
- Code: 200
Content:
{ searchQuery : "iphone 13" }
- Code: 200
Content:
-
Error Response:
-
Code: 404 NOT FOUND Content:
{ error : "No results found" }
-
Sample Call:
$.ajax({ url: "http://localhost:5000/api/search?searchQuery=iphone+13", dataType: "json", type: "GET", success: function (r) { console.log(r); }, });
$.ajax({ url: "http://localhost:5000/api/search", dataType: "json", type: "POST", data: { searchQuery: "iphone 13" }, success: function (r) { console.log(r); }, });
## Other Endpoints :
api/search/product
api/search/product_quick
api/search/product_deep
api/search/reviews
api/search/reviews_quick
api/search/reviews_deep
api/search/search
api/search/search_quick
api/search/search_deep
Comparative Web Product Analysis: A Data-Driven Approach
If you use this project, plz cite or add reference to it :
@INPROCEEDINGS{10452652,
author={Jonathan, Jesvi and Muthusundar, S. K.},
booktitle={2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI)},
title={Comparative Web Product Analysis: A Data-Driven Approach},
year={2023},
volume={},
number={},
pages={1-4},
keywords={Sentiment analysis;Decision making;Data visualization;Pricing;Aerodynamics;Real-time systems;Electronic commerce;E-commerce;Data Scraping;Machine Learning;Data Optimization;Decision Making;Data Analysis},
doi={10.1109/ICDSAAI59313.2023.10452652}}