-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
167 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
import argparse | ||
|
||
import cv2 | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | ||
try: | ||
from transformers import CLIPProcessor, CLIPModel | ||
except ImportError: | ||
print("The transformers package is not installed. Please install it to use CLIP.") | ||
exit(1) | ||
|
||
|
||
from pytorch_grad_cam import GradCAM, \ | ||
ScoreCAM, \ | ||
GradCAMPlusPlus, \ | ||
AblationCAM, \ | ||
XGradCAM, \ | ||
EigenCAM, \ | ||
EigenGradCAM, \ | ||
LayerCAM, \ | ||
FullGrad | ||
|
||
from pytorch_grad_cam.utils.image import show_cam_on_image, \ | ||
preprocess_image | ||
from pytorch_grad_cam.ablation_layer import AblationLayerVit | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--device', type=str, default='cpu', | ||
help='Torch device to use') | ||
parser.add_argument( | ||
'--image-path', | ||
type=str, | ||
default='./examples/both.png', | ||
help='Input image path') | ||
parser.add_argument( | ||
'--labels', | ||
type=str, | ||
nargs='+', | ||
default=["a cat", "a dog", "a car", "a person", "a shoe"], | ||
help='need recognition labels' | ||
) | ||
|
||
parser.add_argument('--aug_smooth', action='store_true', | ||
help='Apply test time augmentation to smooth the CAM') | ||
parser.add_argument( | ||
'--eigen_smooth', | ||
action='store_true', | ||
help='Reduce noise by taking the first principle componenet' | ||
'of cam_weights*activations') | ||
|
||
parser.add_argument( | ||
'--method', | ||
type=str, | ||
default='gradcam', | ||
help='Can be gradcam/gradcam++/scorecam/xgradcam/ablationcam') | ||
|
||
args = parser.parse_args() | ||
if args.device: | ||
print(f'Using device "{args.device}" for acceleration') | ||
else: | ||
print('Using CPU for computation') | ||
|
||
return args | ||
|
||
|
||
def reshape_transform(tensor, height=16, width=16): | ||
result = tensor[:, 1:, :].reshape(tensor.size(0), | ||
height, width, tensor.size(2)) | ||
|
||
# Bring the channels to the first dimension, | ||
# like in CNNs. | ||
result = result.transpose(2, 3).transpose(1, 2) | ||
return result | ||
|
||
|
||
class ImageClassifier(nn.Module): | ||
def __init__(self, labels): | ||
super(ImageClassifier, self).__init__() | ||
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") | ||
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") | ||
self.labels = labels | ||
|
||
def forward(self, x): | ||
text_inputs = self.processor(text=self.labels, return_tensors="pt", padding=True) | ||
|
||
outputs = self.clip(pixel_values=x, input_ids=text_inputs['input_ids'].to(self.clip.device), | ||
attention_mask=text_inputs['attention_mask'].to(self.clip.device)) | ||
|
||
logits_per_image = outputs.logits_per_image | ||
probs = logits_per_image.softmax(dim=1) | ||
|
||
for label, prob in zip(self.labels, probs[0]): | ||
print(f"{label}: {prob:.4f}") | ||
return probs | ||
|
||
|
||
if __name__ == '__main__': | ||
""" python vit_gradcam.py --image-path <path_to_image> | ||
Example usage of using cam-methods on a VIT network. | ||
""" | ||
|
||
args = get_args() | ||
methods = \ | ||
{"gradcam": GradCAM, | ||
"scorecam": ScoreCAM, | ||
"gradcam++": GradCAMPlusPlus, | ||
"ablationcam": AblationCAM, | ||
"xgradcam": XGradCAM, | ||
"eigencam": EigenCAM, | ||
"eigengradcam": EigenGradCAM, | ||
"layercam": LayerCAM, | ||
"fullgrad": FullGrad} | ||
|
||
if args.method not in list(methods.keys()): | ||
raise Exception(f"method should be one of {list(methods.keys())}") | ||
|
||
labels = args.labels | ||
model = ImageClassifier(labels).to(torch.device(args.device)).eval() | ||
print(model) | ||
|
||
target_layers = [model.clip.vision_model.encoder.layers[-1].layer_norm1] | ||
|
||
if args.method not in methods: | ||
raise Exception(f"Method {args.method} not implemented") | ||
|
||
rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1] | ||
rgb_img = cv2.resize(rgb_img, (224, 224)) | ||
rgb_img = np.float32(rgb_img) / 255 | ||
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], | ||
std=[0.5, 0.5, 0.5]).to(args.device) | ||
|
||
if args.method == "ablationcam": | ||
cam = methods[args.method](model=model, | ||
target_layers=target_layers, | ||
reshape_transform=reshape_transform, | ||
ablation_layer=AblationLayerVit()) | ||
else: | ||
cam = methods[args.method](model=model, | ||
target_layers=target_layers, | ||
reshape_transform=reshape_transform) | ||
|
||
|
||
|
||
# If None, returns the map for the highest scoring category. | ||
# Otherwise, targets the requested category. | ||
#targets = [ClassifierOutputTarget(1)] | ||
targets = None | ||
|
||
# AblationCAM and ScoreCAM have batched implementations. | ||
# You can override the internal batch size for faster computation. | ||
cam.batch_size = 32 | ||
|
||
grayscale_cam = cam(input_tensor=input_tensor, | ||
targets=targets, | ||
eigen_smooth=args.eigen_smooth, | ||
aug_smooth=args.aug_smooth) | ||
|
||
# Here grayscale_cam has only one image in the batch | ||
grayscale_cam = grayscale_cam[0, :] | ||
|
||
cam_image = show_cam_on_image(rgb_img, grayscale_cam) | ||
cv2.imwrite(f'{args.method}_cam.jpg', cam_image) |