forked from rebeccaknowlton/drosophila-longevity
-
Notifications
You must be signed in to change notification settings - Fork 1
/
beta_binomial_model.R
95 lines (86 loc) · 3.76 KB
/
beta_binomial_model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# this script recreates the original beta-binomial model from Pallares et al.
library(data.table)
library(aod)
library(ggplot2)
# count data for beta binomial model
alt <- fread('29Jun20_merged_alt_counts_allCHR.txt')
both <- fread('29Jun20_merged_both_counts_allCHR.txt')
info <- read.delim('29Jun20_merged_sample_info.txt')+
# check that sample/individual IDs match up properly
identical(names(alt[,-1]), names(both[,-1]))
identical(as.character(info$sample_ID), names(both[,-1]))
# create variables to save results
pvals <- matrix(nrow = dim(alt)[1], ncol=6)
coefs <- matrix(nrow = dim(alt)[1], ncol=6)
se <- matrix(nrow = dim(alt)[1], ncol=6)
lik <- matrix(nrow = dim(alt)[1], ncol=2)
# fit model and save pvals, coefs, se, lik at each of the sites
for (i in 1:nrow(alt)) {
info$tmp_x <- as.vector(t(alt[i,-1]))
info$tmp_y <- as.vector(t(both[i,-1]))
# exclude samples with no reads at a given site, and samples that couldn't be sexed
tmp_info <- subset(info, tmp_y>0 & sex!='unknown')
mod1 <- tryCatch(betabin(cbind(tmp_x, tmp_y - tmp_x) ~ condition + sequencing_batch + meta_cage + sex, ~1, data=tmp_info), error=function(x){})
mod2 <- tryCatch(betabin(cbind(tmp_x, tmp_y - tmp_x) ~ sequencing_batch + meta_cage + sex, ~1, data=tmp_info), error=function(x){})
tryCatch(lik[i,1] <- logLik(mod1), error = function(x){})
tryCatch(lik[i,2] <- logLik(mod2), error = function(x){})
tryCatch(pvals[i,] <- attributes(summary(mod1))$Coef[,4], error=function(x){})
tryCatch(se[i,] <- attributes(summary(mod1))$Coef[,2], error=function(x){})
tryCatch(coefs[i,] <- attributes(summary(mod1))$Coef[,1], error=function(x){})
}
# summary data from authors to compare pvals and coefs
summary <- read.delim('SummaryTable_allsites_12Nov20.txt')
# vector to save author classifications
author_sig_cat <- rep("NS", nrow(alt))
# look for mismatches
for (i in 1:nrow(alt)) {
summary_idx <- which(summary$site == alt$site[i], arr.ind = TRUE)
if (length(summary_idx) != 0 ) {
# save author_sig_cat
author_sig_cat[i] <- summary$sig_cat[summary_idx]
# check if p values mismatch
if (round(pvals[i,2],3) != round(summary$pval_CTRL[summary_idx],3)) {
print("mismatching pval_CTRL at:")
print(alt$site[i])
print(i)
}
if (round(pvals[i,3],3) != round(summary$pval_HS[summary_idx],3)) {
print("mismatching pval_HS at:")
print(alt$site[i])
print(i)
}
# check if coefficients mismatch
if (round(coefs[i,2],3) != round(summary$coef_CTRL[summary_idx],3)) {
print("mismatching coef_CTRL at:")
print(alt$site[i])
print(i)
}
if (round(coefs[i,3],3) != round(summary$coef_HS[summary_idx],3)) {
print("mismatching coef_HS at:")
print(alt$site[i])
print(i)
}
}
}
# p values and coefficients matched up to 3 decimal places
# plot regression coefficients (recreate figure 2C in Pallares et al.)
df.coefs <- data.frame(ctrl = coefs[,2],
hs = coefs[,3],
sigcat = author_sig_cat)
ggplot(df.coefs, aes(x = ctrl, y = hs, color = sigcat, shape = sigcat)) +
geom_point() +
theme_bw() +
ylab("Genetic effect: HS diet") +
xlab("Genetic effect: CTRL diet") +
scale_color_manual(values = c("NS" = "lightgray",
"shared" = "lightgray",
"HS" = "orange",
"CTRL" = "skyblue")) +
scale_shape_manual(values = c("NS" = 1,
"shared" = 1,
"HS" = 16,
"CTRL" = 16)) +
xlim(-1.5,1) +
ylim(-1.5,1) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_vline(xintercept = 0, linetype = "dashed")