Distributed HPO with Ray ♾
0.0.3
Latest Changes
- add optuna visualizations 🎨 . PR #27 by @aniketmaurya.
- add max_steps for HPO. PR #25 by @aniketmaurya.
- 📝 update docs & license. PR #23 by @aniketmaurya.
- fetch best trial model. PR #21 by @aniketmaurya.
- migrate to ray_tune 🌟. Read more here. PR #36 by @aniketmaurya.
- render jupyter notebooks in documentation. PR #38 by @aniketmaurya.
- remove optuna #39
- Publish Python 🐍 distributions 📦 to PyPI #42
Get Started Now
📚 Documentation: docs.gradsflow.com
$ pip install -U gradsflow
Example
from gradsflow import AutoImageClassifier
from flash.core.data.utils import download_data
from flash.image import ImageClassificationData
data_dir = "/Users/aniket/personal/gradsflow/gradsflow/data/"
download_data("https://pl-flash-data.s3.amazonaws.com/hymenoptera_data.zip", data_dir)
datamodule = ImageClassificationData.from_folders(
train_folder=f"{data_dir}/hymenoptera_data/train/",
val_folder=f"{data_dir}/hymenoptera_data/val/",
)
model = AutoImageClassifier(
datamodule,
max_epochs=2,
n_trials=4,
optimization_metric="val_accuracy",
timeout=50,
)
print("AutoImageClassifier initialised!")
model.hp_tune(gpu=1)