-
Notifications
You must be signed in to change notification settings - Fork 933
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a793892
commit 4bd81a8
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Copyright 2023 DeepMind Technologies Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Tests for open_spiel.python.algorithms.efr.""" | ||
|
||
import itertools | ||
|
||
from absl.testing import absltest | ||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from open_spiel.python import policy | ||
from open_spiel.python.algorithms import efr | ||
from open_spiel.python.algorithms import expected_game_score | ||
from open_spiel.python.algorithms import exploitability | ||
import pyspiel | ||
|
||
_KUHN_GAME = pyspiel.load_game("kuhn_poker") | ||
_LEDUC_GAME = pyspiel.load_game("leduc_poker") | ||
|
||
_KUHN_UNIFORM_POLICY = policy.TabularPolicy(_KUHN_GAME) | ||
_LEDUC_UNIFORM_POLICY = policy.TabularPolicy(_LEDUC_GAME) | ||
|
||
|
||
class ModuleLevelFunctionTest(absltest.TestCase): | ||
|
||
def test__update_current_policy(self): | ||
game = pyspiel.load_game("kuhn_poker") | ||
tabular_policy = policy.TabularPolicy(game) | ||
|
||
cumulative_regrets = np.arange(0, 12 * 2).reshape((12, 2)) | ||
expected_policy = cumulative_regrets / np.sum( | ||
cumulative_regrets, axis=-1, keepdims=True) | ||
nodes_indices = { | ||
u"0": 0, | ||
u"0pb": 1, | ||
u"1": 2, | ||
u"1pb": 3, | ||
u"2": 4, | ||
u"2pb": 5, | ||
u"1p": 6, | ||
u"1b": 7, | ||
u"2p": 8, | ||
u"2b": 9, | ||
u"0p": 10, | ||
u"0b": 11, | ||
} | ||
# pylint: disable=g-complex-comprehension | ||
info_state_nodes = { | ||
key: efr._InfoStateNode( | ||
legal_actions=[0, 1], | ||
index_in_tabular_policy=None, | ||
cumulative_regret=dict(enumerate(cumulative_regrets[index])), | ||
cumulative_policy=None) for key, index in nodes_indices.items() | ||
} | ||
available_deviations = ["blind action", "informed action", "blind cf", "informed cf", "bps", "cfps", "csps", "tips", "bhv"] | ||
|
||
# pylint: enable=g-complex-comprehension | ||
|
||
efr._update_current_policy(tabular_policy, info_state_nodes) | ||
|
||
np.testing.assert_array_equal(expected_policy, | ||
tabular_policy.action_probability_array) | ||
|
||
|
||
class EFRTest(parameterized.TestCase, absltest.TestCase): | ||
|
||
@parameterized.parameters( | ||
["blind action", "informed action", "blind cf", "informed cf", "bps", "cfps", "csps", "tips", "bhv"]) | ||
def test_policy_zero_is_uniform(self): | ||
# We use Leduc and not Kuhn, because Leduc has illegal actions and Kuhn does | ||
# not. | ||
game = pyspiel.load_game("leduc_poker") | ||
cfr_solver = efr._EFRSolver( | ||
game, | ||
deviations_name=deviations_name | ||
) | ||
|
||
np.testing.assert_array_equal( | ||
_LEDUC_UNIFORM_POLICY.action_probability_array, | ||
cfr_solver.current_policy().action_probability_array) | ||
np.testing.assert_array_equal( | ||
_LEDUC_UNIFORM_POLICY.action_probability_array, | ||
cfr_solver.average_policy().action_probability_array) | ||
|
||
@parameterized.parameters( | ||
["blind cf", "informed cf", "bps", "cfps", "csps", "tips", "bhv"]) | ||
def test_cfr_kuhn_poker(self): | ||
game = pyspiel.load_game("kuhn_poker") | ||
efr_solver = efr.EFRSolver(game) | ||
for _ in range(300): | ||
efr_solver.evaluate_and_update_policy() | ||
average_policy = efr_solver.average_policy() | ||
average_policy_values = expected_game_score.policy_value( | ||
game.new_initial_state(), [average_policy] * 2) | ||
# 1/18 is the Nash value. See https://en.wikipedia.org/wiki/Kuhn_poker | ||
np.testing.assert_allclose( | ||
average_policy_values, [-1 / 18, 1 / 18], atol=1e-3) | ||
|
||
if __name__ == "__main__": | ||
absltest.main() |