Skip to content

A Rust type library that is as easy to use as Python built-in types.

Notifications You must be signed in to change notification settings

chen-qingyu/pyinrs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyInRs

A Rust type library that is as easy to use as Python built-in types.

1. Attribute

  • Name: PyInRs
  • Goal: Provide a Rust type library that is as easy to use as Python built-in types
  • Module: List, Set, Dict, Int, Str, Complex, Deque, Fraction
  • Test: Using rstest for unit tests and ensure all tests passed
  • Security: There is no unsafe code block

2. Feature

  • Simple: Stay simple, stay young. While ensuring friendly and robust, try to be concise and easy to maintain and read.
  • Friendly: With my careful design, it can be used as conveniently as Python's built-in types. Very Pythonic.
  • Robust: There are corresponding checks for the insert, remove, modify, and access of containers.
  • Efficiency: The performance of the parts with the same function as the standard library is almost the same.

3. Usage

To use it, add the following lines to your Cargo.toml file:

[dependencies]
pyinrs = "1"

There are a total of 8 classes, refer to commonly used classes in Python:

Type in PyInRs Type in Python
List<T> list
Set<T> set
Dict<K, V> dict
Int int
Str str
Complex complex
Deque<T> collections.deque
Fraction fractions.Fraction

Some simple examples:

use pyinrs::*;

// List support negative index
List::from([1, 2, 3, 4, 5])[-1]; // 5
// List uniquify
List::from([1, 2, 3, 1, 2, 3, 1, 2, 3]).uniquify(); // [1, 2, 3]

// test whether a Set is proper subset of another Set
Set::from([5, 1]) < Set::from([1, 2, 3, 4, 5]); // true
// intersection of Sets, support intersection, union, difference, and symmetric difference
Set::from([1, 2, 3, 4, 5]) & Set::from([1, 3, 5, 7, 9]); // {1, 3, 5}

// Dict access
Dict::from([("one", 1), ("two", 2), ("three", 3)])[&"one"]; // 1
// Dict get values as a Set
Dict::from([("one", 1), ("two", 2), ("three", 3)]).values().collect::<Set<&i32>>(); // {1, 2, 3}

// Int basic operation, support +, -, *, /, % and compare
Int::from("18446744073709551617") + Int::from("18446744073709551617"); // 36893488147419103234
// Int increment, after my optimization, much faster than `+= 1`
Int::from("99999999999999").inc(); // 100000000000000
// Int modular power, very fast
Int::pow_mod(&"1024".into(), &"1024".into(), &"100".into()); // 76
// Int factorial
Int::from("5").factorial().factorial(); // 66895029134491270575881180540903725867527463...
// get random Int, using hardware device to generate true random integer if possible
Int::random(4300); // 23795759214348387514699522496327832510939573336290225099601421311...
// calculate the next prime that greater than self
Int::new().next_prime();// 2

// Str split
Str::from("one, two, three").split(", "); // ["one", "two", "three"]
// Str join
Str::from(".").join(["192", "168", "0", "1"].into()); // "192.168.0.1"

// Complex addition
Complex::from((1., 2.)) + Complex::from((1., 3.)); // (2+5j)
// Complex power
Complex::pow(&Complex::from((1., 2.)), &Complex::from((-1., 2.))); // (0.04281551979798478+0.023517649351954585j)

// Deque element reference
Deque::from([1, 2, 3, 4, 5]).front(); // 1
// Deque rotate to right (or left), very vivid!
Deque::from([1, 2, 3, 4, 5]) >> 1; // <5, 1, 2, 3, 4>

// Fraction addition
Fraction::from((1, 2)) + Fraction::from((1, 3)); // 5/6
// Fraction modulo
Fraction::from((1, 2)) % Fraction::from((1, 3)); // 1/6

4. Advantage

The advantage of PyInRs is that it combines the high performance of Rust with the ease of use of Python, and can also be easily combined with other libraries, for example:

use pyinrs::*;

// 1. All types can be printed and easily combined:
let dict: Dict<Str, List<Int>> = [
    ("first".into(), ["123".into(), "456".into()].into()),
    ("second".into(), ["789".into()].into()),
    ("third".into(), ["12345678987654321".into(), "5".into()].into()),
].into();
print!("{dict}"); // {"first": [123, 456], "second": [789], "third": [12345678987654321, 5]}
dict.keys().cloned().collect::<Set<Str>>(); // {"first", "second", "third"}
dict[&"third".into()][-1].factorial(); // 120

// 2. All container types are iterable:
for (k, v) in Dict::from([(1, 1), (2, 4), (3, 9)]) {
    assert_eq!(k * k, v);
}

// 3. All immutable types are hashable:
use std::collections::HashSet;
let _set1: HashSet<Int> = HashSet::from(["1".into(), "2".into(), "3".into(), "18446744073709551617".into()]);
let _set2: HashSet<Str> = HashSet::from(["hello".into(), "pyinrs".into()]);
let _set3: HashSet<Fraction> = HashSet::from([(1, 2).into(), (3, 4).into()]);

// 4. Using pyinrs::Fraction in mymatrix to display accurate matrix.
use mymatrix::Matrix;

let a = Matrix::from([[1, 2], [3, 4]]);
let b = Matrix::zeros(2, 2);
let c = Matrix::ones(2, 2);
let d = Matrix::identity(2);

print!("{}", ((a + b) * (c + d)).inv().unwrap());
/*
[
-11/6   5/6
  5/3  -2/3
]
*/

If you want to use a similar library in C++, please see: PyInCpp.

About

A Rust type library that is as easy to use as Python built-in types.

Resources

Stars

Watchers

Forks

Languages