Skip to content

championballer/one-fourth-labs-deep-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

padh.ai - Deep Learning

Code and Documents related to Deep Learning Course at padh.ai

  • #ecf00a Practical
  • #1589F0 Theory
  • #c5f015 Complete
  • #f03c15 Incomplete
S.no Module Theory/Practical Status Notes
1 Python Basics #ecf00a Practical #c5f015 Here
2 6Jars and Expert Systems #1589F0 Theory #c5f015 Here
3 Linear Algebra Basics #1589F0 Theory #c5f015 Here
4 Python Basics 2 #ecf00a Practical #c5f015 Here
5 MP Neuron #1589F0 Theory #c5f015 Here
6 Perceptron Model #1589F0 Theory #c5f015 Here
7 MP Neuron and Perceptron Practical #ecf00a Practical #f03c15 Here
8 Sigmoid Neuron #1589F0 Theory #c5f015 Here
9 Contest 1 #ecf00a Practical #f03c15 Here
10 Sigmoid Neuron using Python #ecf00a Practical #f03c15 Here
11 Probability #1589F0 Theory #c5f015 Here
12 Information Theory & Cross Entropy #1589F0 Theory #c5f015 Here
13 Contest 2 #ecf00a Practical #f03c15 Here
14 Representation Power of Function #1589F0 Theory #f03c15 Here
15 Deep Neural Networks #1589F0 Theory #f03c15 Here
16 DNNs using Python #ecf00a Practical #f03c15 Here
17 Backpropagation #1589F0 Theory #c5f015 Here
18 Backpropagation using Python #ecf00a Practical #f03c15 Here
19 Backpropagation 2 #1589F0 Theory #c5f015 Here
20 Backpropagating - the full version using Python #ecf00a Practical #f03c15 Here
21 Optimisation Algorithms Theory 1 #1589F0 Theory #c5f015 Here
22 Optimisation Algorithms Theory 2 #1589F0 Theory #c5f015 Here
23 Optimisation Algorithms Practical #ecf00a Practical #f03c15 Here
24 Activation Functions & Initialisation Methods Theory #1589F0 Theory #c5f015 Here
25 Activation Functions & Initialisation Methods Practical #ecf00a Practical #f03c15 Here
26 Regularization Theory #1589F0 Theory #c5f015 Here
27 Regularization Practical #ecf00a Practical #f03c15 Here
28 Basics of Pytorch #ecf00a Practical #c5f015 Here
29 FNNs using Pytorch #ecf00a Practical #c5f015 Here
30 The Convolution Operation #1589F0 Theory #c5f015 Here
31 Convolution to Neural Networks #1589F0 Theory #c5f015 Here
32 CNNs in Pytorch #ecf00a Practical #c5f015 Here
33 CNN Architectures 1 #1589F0 Theory #c5f015 Here
34 CNN Architectures 2 #1589F0 Theory #c5f015 Here
35 Building CNNs #ecf00a Practical #f03c15 Here
36 Visualising CNNs #ecf00a Practical #f03c15 Here
37 Visualising CNNs in Python #ecf00a Practical #f03c15 Here
38 Batch Normalization and Dropout #1589F0 Theory #f03c15 Here
39 Batch Normalization and Dropout using Python #ecf00a Practical #f03c15 Here
40 Hypermeter Tuning and MLFlow #ecf00a Practical #f03c15 Here
41 Sequence Learning Problems #1589F0 Theory #c5f015 Here
42 Recurrent Neural Networks #1589F0 Theory #c5f015 Here
43 Vanishing and Exploding Gradients #1589F0 Theory #c5f015 Here
44 LSTMs and GRUs #1589F0 Theory #c5f015 Here
45 Sequence Models in Pytorch #ecf00a Practical #c5f015 Here
46 Addressing the problem of vanishing and exploding gradients #1589F0 Theory #c5f015 Here
47 Batching for Sequence Models in Pytorch #ecf00a Practical #c5f015 Here
48 Neural Encoders and Decoders #1589F0 Theory #c5f015 Here
49 Attention Mechanism #1589F0 Theory #c5f015 Here
50 Encoder Decoder Models and Attention Mechanism using PyTorch #ecf00a Practical #f03c15 Here
51 RCNN #1589F0 Theory #f03c15 Here
52 YOLO #1589F0 Theory #f03c15 Here

Note : Some links might not work. They are a work in progress.

Additional Resources for better understanding:

Topic Source
LSTMs solving vanishing gradient problem Link
Using nn.init methods for initialising weights in Pytorch Link
Long Short-Term Memory: From Zero to Hero with PyTorch Link
Understanding the return type of nn.LSTM in Pytorch Link
Operating with variable length sequences for batching using packing in Pytorch Link
Stackoverflow packing sequences Link
Backpropogation in CNN Link 1 , Link 2
Utility of 1*1 convolutions Link
Illustrated Transformer Link
Attention is all you need; Attentional Neural Network Models, Łukasz Kaiser , Masterclass Link

About

Code and Documents related to Deep Learning Course at padh.ai

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages