Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

staging/main/0.12.0 #1145

Merged
merged 6 commits into from
Jun 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/publish-python-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
python-version: '3.11'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/test-python-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.8, 3.9, "3.10"]
python-version: [3.9, "3.10", "3.11"]

steps:
- uses: actions/checkout@v4
Expand Down
1 change: 1 addition & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
global-exclude .DS_Store
global-exclude */__pycache__/*

include *.txt
include CODEOWNERS
Expand Down
41 changes: 26 additions & 15 deletions dataprofiler/labelers/char_load_tf_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,8 @@ def _construct_model(self) -> None:
model_loc = self._parameters["model_path"]

self._model: tf.keras.Model = tf.keras.models.load_model(model_loc)
softmax_output_layer_name = self._model.outputs[0].name.split("/")[0]
self._model = tf.keras.Model(self._model.inputs, self._model.outputs)
softmax_output_layer_name = self._model.output_names[0]
softmax_layer_ind = cast(
int,
labeler_utils.get_tf_layer_index_from_name(
Expand All @@ -252,21 +253,28 @@ def _construct_model(self) -> None:
num_labels, activation="softmax", name="softmax_output"
)(self._model.layers[softmax_layer_ind - 1].output)

# Output the model into a .pb file for TensorFlow
argmax_layer = tf.keras.backend.argmax(new_softmax_layer)
# Add argmax layer to get labels directly as an output
argmax_layer = tf.keras.ops.argmax(new_softmax_layer, axis=2)

argmax_outputs = [new_softmax_layer, argmax_layer]
self._model = tf.keras.Model(self._model.inputs, argmax_outputs)
self._model = tf.keras.Model(self._model.inputs, self._model.outputs)

# Compile the model w/ metrics
softmax_output_layer_name = self._model.outputs[0].name.split("/")[0]
softmax_output_layer_name = self._model.output_names[0]
losses = {softmax_output_layer_name: "categorical_crossentropy"}

# use f1 score metric
f1_score_training = labeler_utils.F1Score(
num_classes=num_labels, average="micro"
)
metrics = {softmax_output_layer_name: ["acc", f1_score_training]}
metrics = {
softmax_output_layer_name: [
"categorical_crossentropy",
"acc",
f1_score_training,
]
}

self._model.compile(loss=losses, optimizer="adam", metrics=metrics)

Expand Down Expand Up @@ -294,30 +302,33 @@ def _reconstruct_model(self) -> None:
num_labels = self.num_labels
default_ind = self.label_mapping[self._parameters["default_label"]]

# Remove the 2 output layers ('softmax', 'tf_op_layer_ArgMax')
for _ in range(2):
self._model.layers.pop()

# Add the final Softmax layer to the previous spot
# self._model.layers[-2] to skip: original softmax
final_softmax_layer = tf.keras.layers.Dense(
num_labels, activation="softmax", name="softmax_output"
)(self._model.layers[-4].output)
)(self._model.layers[-2].output)

# Output the model into a .pb file for TensorFlow
argmax_layer = tf.keras.backend.argmax(final_softmax_layer)
# Add argmax layer to get labels directly as an output
argmax_layer = tf.keras.ops.argmax(final_softmax_layer, axis=2)

argmax_outputs = [final_softmax_layer, argmax_layer]
self._model = tf.keras.Model(self._model.inputs, argmax_outputs)

# Compile the model
softmax_output_layer_name = self._model.outputs[0].name.split("/")[0]
softmax_output_layer_name = self._model.output_names[0]
losses = {softmax_output_layer_name: "categorical_crossentropy"}

# use f1 score metric
f1_score_training = labeler_utils.F1Score(
num_classes=num_labels, average="micro"
)
metrics = {softmax_output_layer_name: ["acc", f1_score_training]}
metrics = {
softmax_output_layer_name: [
"categorical_crossentropy",
"acc",
f1_score_training,
]
}

self._model.compile(loss=losses, optimizer="adam", metrics=metrics)

Expand Down Expand Up @@ -370,7 +381,7 @@ def fit(
f1_report: dict = {}

self._model.reset_metrics()
softmax_output_layer_name = self._model.outputs[0].name.split("/")[0]
softmax_output_layer_name = self._model.output_names[0]

start_time = time.time()
batch_id = 0
Expand Down
Loading