Skip to content

calebshibu/SLAP2-Cellpose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SLAP2-Cellpose

Cellpose Nuclei model retrained with SLAP2 data

This repository contains a version of the Cellpose nuclei model that has been retrained using SLAP2 data. The Cellpose model is a generalist algorithm for cell segmentation.

1. Create an conda env

conda create -n cellpose python=3.12

conda activate cellpose

2. Install cellpose

pip install -U --no-cache-dir git+https://www.github.com/mouseland/cellpose.git

3. Running cellpose

python run.py --input <input_file_path> --output <output_directory_path>

Example

python run.py --input /Users/caleb.shibu/Downloads/725018_20240326_163614_DMD1_merged.tif --output /Users/caleb.shibu/Desktop/test-cellpose

The output folder would have 2 files flows.tif and masks_pred.tif.

Model comparison before and after retraining:

ModelComparison Cyto2 model gave the highest AUC value for CellProbabilty of 2 and FlowThreshold of 0.5. We used that to train cyto2 model with Voltage Imaging data and the AUC value improved for CellProbabilty of -1.0 and FlowThreshold of 0.5.

About

Cellpose Nuclei model retrained with SLAP2 data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages