NLP日常工作经验和论文解析,包含:预训练模型,文本表征,文本相似度,文本分类,多模态,知识蒸馏,词向量。
我觉得NLP是一个值得深耕的领域,所以希望可以不停的提升自己核心竞争力和自己的段位!
微信公众号:DASOU
- 史上最全Transformer面试题
- 答案解析(1)-史上最全Transformer面试题
- Pytorch代码分析--如何让Bert在finetune小数据集时更“稳”一点
- 解决老大难问题-如何一行代码带你随心所欲重新初始化bert的某些参数(附Pytorch代码详细解读)
- 3分钟从零解读Transformer的Encoder
- 原版Transformer的位置编码究竟有没有包含相对位置信息
- BN踩坑记--谈一下Batch Normalization的优缺点和适用场景
- 谈一下相对位置编码
- NLP任务中-layer-norm比BatchNorm好在哪里
- 谈一谈Decoder模块
- Transformer的并行化
- Transformer全部文章合辑
- RNN的梯度消失有什么与众不同的地方.md
- VIT-如何将Transformer更好的应用到CV领域
- FastBERT-CPU推理加速10倍
- RoBERTa:更多更大更强
- 为什么Bert做不好无监督语义匹配
- UniLM:为Bert插上文本生成的翅膀
- tBERT-BERT融合主题模型做文本匹配
- XLNET模型从零解读
- 如何在脱敏数据中使用BERT等预训练模型
- 什么是知识蒸馏
- 如何让 TextCNN 逼近 Bert
- Bert蒸馏到简单网络lstm
- PKD-Bert基于多层的知识蒸馏方式
- BERT-of-Theseus-模块压缩交替训练
- tinybert-全方位蒸馏
- ALBERT:更小更少但并不快
- BERT知识蒸馏代码解析-如何写好损失函数
- 知识蒸馏综述万字长文
- Word2vec
- Word2vec两种训练模型详细解读-一个词经过模型训练可以获得几个词向量
- Word2vec两种优化方式细节详细解读
- Word2vec-负采样和层序softmax与原模型是否等价
- Word2vec为何需要二次采样以及相关细节详细解读
- Word2vec的负采样
- Word2vec模型究竟是如何获得词向量的
- Word2vec训练参数的选定
- CBOW和skip-gram相较而言,彼此相对适合哪些场景.md
- Fasttext/Glove
- 多模态之ViLBERT:双流网络,各自为王
- 复盘多模态任务落地的六大问题
- 如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务
- 层次分类体系的必要性-多模态讲解系列(1)
- 文本和图像特征表示模块详解-多模态讲解系列(2)
- 多模态中各种Fusion方式汇总
- 五千字全面梳理文本相似度/文本匹配模型
- 如何又好又快的做文本匹配-ESIM模型
- 阿里RE2-将残差连接和文本匹配模型融合.md
- 聊一下孪生网络和DSSM的混淆点以及向量召回的一个细节
- DSSM论文-公司实战文章
- bert白化简单的梳理:公式推导+PCA&SVD+代码解读
- SIMCSE论文解析