forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'MIC-DKFZ:master' into master
- Loading branch information
Showing
7 changed files
with
231 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import multiprocessing | ||
import shutil | ||
|
||
import SimpleITK as sitk | ||
import numpy as np | ||
from tqdm import tqdm | ||
from batchgenerators.utilities.file_and_folder_operations import * | ||
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json | ||
from nnunetv2.paths import nnUNet_raw | ||
|
||
|
||
def copy_BraTS_segmentation_and_convert_labels_to_nnUNet(in_file: str, out_file: str) -> None: | ||
# use this for segmentation only!!! | ||
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3 | ||
img = sitk.ReadImage(in_file) | ||
img_npy = sitk.GetArrayFromImage(img) | ||
|
||
uniques = np.unique(img_npy) | ||
for u in uniques: | ||
if u not in [0, 1, 2, 4]: | ||
raise RuntimeError('unexpected label') | ||
|
||
seg_new = np.zeros_like(img_npy) | ||
seg_new[img_npy == 4] = 3 | ||
seg_new[img_npy == 2] = 1 | ||
seg_new[img_npy == 1] = 2 | ||
img_corr = sitk.GetImageFromArray(seg_new) | ||
img_corr.CopyInformation(img) | ||
sitk.WriteImage(img_corr, out_file) | ||
|
||
|
||
def convert_labels_back_to_BraTS(seg: np.ndarray): | ||
new_seg = np.zeros_like(seg) | ||
new_seg[seg == 1] = 2 | ||
new_seg[seg == 3] = 4 | ||
new_seg[seg == 2] = 1 | ||
return new_seg | ||
|
||
|
||
def load_convert_labels_back_to_BraTS(filename, input_folder, output_folder): | ||
a = sitk.ReadImage(join(input_folder, filename)) | ||
b = sitk.GetArrayFromImage(a) | ||
c = convert_labels_back_to_BraTS(b) | ||
d = sitk.GetImageFromArray(c) | ||
d.CopyInformation(a) | ||
sitk.WriteImage(d, join(output_folder, filename)) | ||
|
||
|
||
def convert_folder_with_preds_back_to_BraTS_labeling_convention(input_folder: str, output_folder: str, | ||
num_processes: int = 12): | ||
""" | ||
reads all prediction files (nifti) in the input folder, converts the labels back to BraTS convention and saves the | ||
""" | ||
maybe_mkdir_p(output_folder) | ||
nii = subfiles(input_folder, suffix='.nii.gz', join=False) | ||
with multiprocessing.get_context("spawn").Pool(num_processes) as p: | ||
p.starmap(load_convert_labels_back_to_BraTS, zip(nii, [input_folder] * len(nii), [output_folder] * len(nii))) | ||
|
||
|
||
if __name__ == '__main__': | ||
brats_data_dir = ... | ||
|
||
task_id = 42 | ||
task_name = "BraTS2018" | ||
|
||
foldername = "Dataset%03.0d_%s" % (task_id, task_name) | ||
|
||
# setting up nnU-Net folders | ||
out_base = join(nnUNet_raw, foldername) | ||
imagestr = join(out_base, "imagesTr") | ||
labelstr = join(out_base, "labelsTr") | ||
maybe_mkdir_p(imagestr) | ||
maybe_mkdir_p(labelstr) | ||
|
||
case_ids_hgg = subdirs(join(brats_data_dir, "HGG"), prefix='Brats', join=False) | ||
case_ids_lgg = subdirs(join(brats_data_dir, "LGG"), prefix="Brats", join=False) | ||
|
||
print("copying hggs") | ||
for c in tqdm(case_ids_hgg): | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_t1.nii"), join(imagestr, c + '_0000.nii')) | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_t1ce.nii"), join(imagestr, c + '_0001.nii')) | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_t2.nii"), join(imagestr, c + '_0002.nii')) | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_flair.nii"), join(imagestr, c + '_0003.nii')) | ||
|
||
copy_BraTS_segmentation_and_convert_labels_to_nnUNet(join(brats_data_dir, "HGG", c, c + "_seg.nii"), | ||
join(labelstr, c + '.nii')) | ||
print("copying lggs") | ||
for c in tqdm(case_ids_lgg): | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_t1.nii"), join(imagestr, c + '_0000.nii')) | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_t1ce.nii"), join(imagestr, c + '_0001.nii')) | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_t2.nii"), join(imagestr, c + '_0002.nii')) | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_flair.nii"), join(imagestr, c + '_0003.nii')) | ||
|
||
copy_BraTS_segmentation_and_convert_labels_to_nnUNet(join(brats_data_dir, "LGG", c, c + "_seg.nii"), | ||
join(labelstr, c + '.nii')) | ||
|
||
generate_dataset_json(out_base, | ||
channel_names={0: 'T1', 1: 'T1ce', 2: 'T2', 3: 'Flair'}, | ||
labels={ | ||
'background': 0, | ||
'whole tumor': (1, 2, 3), | ||
'tumor core': (2, 3), | ||
'enhancing tumor': (3,) | ||
}, | ||
num_training_cases=(len(case_ids_lgg) + len(case_ids_hgg)), | ||
file_ending='.nii', | ||
regions_class_order=(1, 2, 3), | ||
license='see https://www.synapse.org/#!Synapse:syn25829067/wiki/610863', | ||
reference='see https://www.synapse.org/#!Synapse:syn25829067/wiki/610863', | ||
dataset_release='1.0') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import multiprocessing | ||
import shutil | ||
|
||
import SimpleITK as sitk | ||
import numpy as np | ||
from tqdm import tqdm | ||
from batchgenerators.utilities.file_and_folder_operations import * | ||
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json | ||
from nnunetv2.paths import nnUNet_raw | ||
|
||
|
||
def copy_BraTS_segmentation_and_convert_labels_to_nnUNet(in_file: str, out_file: str) -> None: | ||
# use this for segmentation only!!! | ||
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3 | ||
img = sitk.ReadImage(in_file) | ||
img_npy = sitk.GetArrayFromImage(img) | ||
|
||
uniques = np.unique(img_npy) | ||
for u in uniques: | ||
if u not in [0, 1, 2, 4]: | ||
raise RuntimeError('unexpected label') | ||
|
||
seg_new = np.zeros_like(img_npy) | ||
seg_new[img_npy == 4] = 3 | ||
seg_new[img_npy == 2] = 1 | ||
seg_new[img_npy == 1] = 2 | ||
img_corr = sitk.GetImageFromArray(seg_new) | ||
img_corr.CopyInformation(img) | ||
sitk.WriteImage(img_corr, out_file) | ||
|
||
|
||
def convert_labels_back_to_BraTS(seg: np.ndarray): | ||
new_seg = np.zeros_like(seg) | ||
new_seg[seg == 1] = 2 | ||
new_seg[seg == 3] = 4 | ||
new_seg[seg == 2] = 1 | ||
return new_seg | ||
|
||
|
||
def load_convert_labels_back_to_BraTS(filename, input_folder, output_folder): | ||
a = sitk.ReadImage(join(input_folder, filename)) | ||
b = sitk.GetArrayFromImage(a) | ||
c = convert_labels_back_to_BraTS(b) | ||
d = sitk.GetImageFromArray(c) | ||
d.CopyInformation(a) | ||
sitk.WriteImage(d, join(output_folder, filename)) | ||
|
||
|
||
def convert_folder_with_preds_back_to_BraTS_labeling_convention(input_folder: str, output_folder: str, | ||
num_processes: int = 12): | ||
""" | ||
reads all prediction files (nifti) in the input folder, converts the labels back to BraTS convention and saves the | ||
""" | ||
maybe_mkdir_p(output_folder) | ||
nii = subfiles(input_folder, suffix='.nii.gz', join=False) | ||
with multiprocessing.get_context("spawn").Pool(num_processes) as p: | ||
p.starmap(load_convert_labels_back_to_BraTS, zip(nii, [input_folder] * len(nii), [output_folder] * len(nii))) | ||
|
||
|
||
if __name__ == '__main__': | ||
brats_data_dir = ... | ||
|
||
task_id = 43 | ||
task_name = "BraTS2019" | ||
|
||
foldername = "Dataset%03.0d_%s" % (task_id, task_name) | ||
|
||
# setting up nnU-Net folders | ||
out_base = join(nnUNet_raw, foldername) | ||
imagestr = join(out_base, "imagesTr") | ||
labelstr = join(out_base, "labelsTr") | ||
maybe_mkdir_p(imagestr) | ||
maybe_mkdir_p(labelstr) | ||
|
||
case_ids_hgg = subdirs(join(brats_data_dir, "HGG"), prefix='BraTS', join=False) | ||
case_ids_lgg = subdirs(join(brats_data_dir, "LGG"), prefix="BraTS", join=False) | ||
|
||
print("copying hggs") | ||
for c in tqdm(case_ids_hgg): | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_t1.nii"), join(imagestr, c + '_0000.nii')) | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_t1ce.nii"), join(imagestr, c + '_0001.nii')) | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_t2.nii"), join(imagestr, c + '_0002.nii')) | ||
shutil.copy(join(brats_data_dir, "HGG", c, c + "_flair.nii"), join(imagestr, c + '_0003.nii')) | ||
|
||
copy_BraTS_segmentation_and_convert_labels_to_nnUNet(join(brats_data_dir, "HGG", c, c + "_seg.nii"), | ||
join(labelstr, c + '.nii')) | ||
print("copying lggs") | ||
for c in tqdm(case_ids_lgg): | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_t1.nii"), join(imagestr, c + '_0000.nii')) | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_t1ce.nii"), join(imagestr, c + '_0001.nii')) | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_t2.nii"), join(imagestr, c + '_0002.nii')) | ||
shutil.copy(join(brats_data_dir, "LGG", c, c + "_flair.nii"), join(imagestr, c + '_0003.nii')) | ||
|
||
copy_BraTS_segmentation_and_convert_labels_to_nnUNet(join(brats_data_dir, "LGG", c, c + "_seg.nii"), | ||
join(labelstr, c + '.nii')) | ||
|
||
generate_dataset_json(out_base, | ||
channel_names={0: 'T1', 1: 'T1ce', 2: 'T2', 3: 'Flair'}, | ||
labels={ | ||
'background': 0, | ||
'whole tumor': (1, 2, 3), | ||
'tumor core': (2, 3), | ||
'enhancing tumor': (3,) | ||
}, | ||
num_training_cases=(len(case_ids_hgg) + len(case_ids_lgg)), | ||
file_ending='.nii', | ||
regions_class_order=(1, 2, 3), | ||
license='see https://www.synapse.org/#!Synapse:syn25829067/wiki/610863', | ||
reference='see https://www.synapse.org/#!Synapse:syn25829067/wiki/610863', | ||
dataset_release='1.0') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters