Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

LSTNet Implementation #173

Merged
Merged
5 changes: 3 additions & 2 deletions bayesflow/experimental/networks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,9 @@
from .coupling_flow import CouplingFlow
from .deep_set import DeepSet
from .flow_matching import FlowMatching
from .inference_network import InferenceNetwork
from .mlp import MLP
from .resnet import ResNet
from .transformers import SetTransformer
from .summary_network import SummaryNetwork

from .inference_network import InferenceNetwork
from .summary_network import SummaryNetwork
1 change: 1 addition & 0 deletions bayesflow/experimental/networks/lstnet/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .lstnet import LSTNet
64 changes: 64 additions & 0 deletions bayesflow/experimental/networks/lstnet/lstnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import keras
from bayesflow.experimental.types import Tensor
from bayesflow.experimental.utils import keras_kwargs
from keras import layers, Sequential, regularizers
from keras.saving import (register_keras_serializable)
from .skip_gru import SkipGRU
from ...networks.resnet import ResNet

@register_keras_serializable(package="bayesflow.networks.lstnet")
class LSTNet(keras.Model):
"""
Implements a LSTNet Architecture as described in [1]

[1] Y. Zhang and L. Mikelsons, Solving Stochastic Inverse Problems with Stochastic BayesFlow,
2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
Seattle, WA, USA, 2023, pp. 966-972, doi: 10.1109/AIM46323.2023.10196190.

TODO: Add proper docstring

"""

def __init__(
self,
cnn_out: int = 128,
kernel_size: int = 4,
kernel_initializer: str = "glorot_uniform",
kernel_regularizer: regularizers.Regularizer | None = None,
activation: str = "relu",
gru_out: int = 64,
skip_outs: list[int] = [32],
skip_steps: list[int] = [2],
resnet_out: int = 32,
**kwargs
):
if len(skip_outs) != len(skip_steps):
raise ValueError("hidden_out must have same length as skip_steps")

super().__init__(**keras_kwargs(kwargs))

# Define model
self.model = Sequential()
self.conv1 = layers.Conv1D(
filters=cnn_out,
kernel_size=kernel_size,
activation=activation,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer
)
self.bnorm = layers.BatchNormalization()
self.skip_gru = SkipGRU(gru_out, skip_outs, skip_steps)
self.resnet = ResNet(width=resnet_out)

# Aggregate layers In: (batch, time steps, num series)
self.model.add(self.conv1) # -> (batch, reduced time steps, cnn_out)
self.model.add(self.bnorm) # -> (batch, reduced time steps, cnn_out)
self.model.add(self.skip_gru) # -> (batch, _)
self.model.add(self.resnet) # -> (batch, resnet_out)

def call(self, x: Tensor) -> Tensor:
x = self.model(x)
return x

def build(self, input_shape):
self.call(keras.ops.zeros(input_shape))
44 changes: 44 additions & 0 deletions bayesflow/experimental/networks/lstnet/skip_gru.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import keras
from keras.saving import register_keras_serializable
from keras import layers
from bayesflow.experimental.types import Tensor
from bayesflow.experimental.utils import keras_kwargs

@register_keras_serializable(package="bayesflow.networks.skip_gru")
class SkipGRU(keras.Model):
"""
Implements a Skip GRU layer as described in [1]

[1] Y. Zhang and L. Mikelsons, Solving Stochastic Inverse Problems with Stochastic BayesFlow,
2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
Seattle, WA, USA, 2023, pp. 966-972, doi: 10.1109/AIM46323.2023.10196190.

TODO: Add proper docstring

"""
def __init__(self, gru_out: int, skip_outs: list[int], skip_steps: list[int], **kwargs):
super().__init__(**keras_kwargs(kwargs))
self.gru_out = gru_out
self.skip_steps = skip_steps
self.gru = layers.GRU(gru_out)
self.skip_grus = [layers.GRU(skip_outs[i]) for i in range(len(self.skip_steps))]

def call(self, x: Tensor) -> Tensor:
sgru = self.gru(x)
for i, skip_step in enumerate(self.skip_steps):
# Reshape, remove skipped time points
skip_length = x.shape[1] // skip_step
s = x[:, -skip_length * skip_step:, :]
s = keras.ops.reshape(s, (-1, s.shape[2], skip_length, skip_step))
s = keras.ops.transpose(s, [0, 3, 2, 1])
s = keras.ops.reshape(s, (-1, s.shape[2], s.shape[3]))

# Reapply GRU, add to working tensor
s = self.skip_grus[i](s)
s = keras.ops.reshape(s, (-1, skip_step * s.shape[1]))
sgru = keras.ops.concatenate([sgru, s], axis=1)

return sgru

def build(self, input_shape):
self.call(keras.ops.zeros(input_shape))