Skip to content

Practical tutorials and labs for 2-day Deep Learning using TensorFlow workshop organized by Persontyle and NVIDIA Deep Learning Institute

Notifications You must be signed in to change notification settings

annajiat/tensorflow_tutorial

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorFlow Tutorials for Deep Learning Workshop

Learn TensorFlow from scratch with examples and visualizations with interactive jupyer notebooks. Learn to compete in the Kaggle leaf detection challenge!

All exercises are designed to be run from a CPU on a laptop, but can be accelerated with GPU resources.

Setup and Installation

Guides for downloading and installing TensorFlow on Linux, OSX and Windows using Docker.

Material

The material consists of 4 labs.

Lab2 - FFN

Logistic regression, feed forward neural network (FFN) on the (in)famous MNIST!

Optional reading material from Michael Nielsen:Chapters 1-4 (Do 3-5 of the optional exercises).

Lab4 - CNN

Convolutional Neural Network (CNN) and Spatial Transformer on images.

Optional reading material from Michael Nielsen Chapter 6 (stop when reaching section called Other approaches to deep neural nets).

Lab5 - RNN

Recurrent Neural Network (RNN) on Translation using Encoder-Decoder model and Encoder-Decoder with attention.

Optional reading material from Alex Graves Chapters 3.1, 3.2 and 4,

Lab6 - Kaggle

Compete in the kaggle competition Leaf Classification using FFN, CNN and RNN.

About

Practical tutorials and labs for 2-day Deep Learning using TensorFlow workshop organized by Persontyle and NVIDIA Deep Learning Institute

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 77.9%
  • Python 22.1%