The problem statement can be found here
For short-term forecasting, the following algorithm demonstrated the state-of-the-art. The work requires the consistency of the system, that is, the ability to make predictions in both directions. This minimizes the following loss
The implementation and instructure are in the corresponding folder koopmanAE
For long-term forecasting, there was proposed Spectral Methods usage with Koopman theory, and a comparison with Fourier transform is made.
The implementation and instructure are in the corresponding folder from_fourier_to_koopman
.
├── from_fourier_to_koopman
│ ├── examples.py
│ ├── fourier_koopman
│ │ ├── fourier.py
│ │ ├── __init__.py
│ │ └── koopman.py
│ ├── imgs
│ │ ├── fourier_koopman_objectives.png
│ │ └── youtube_thumb.png
│ ├── LICENSE
│ ├── README.rst
│ └── unknown_phase_problem.ipynb
├── koopmanAE
│ ├── driver.py
│ ├── model.py
│ ├── plot
│ │ └── pred_pendulum.png
│ ├── plot_pred_error.py
│ ├── read_dataset.py
│ ├── README.md
│ ├── tools.py
│ ├── training_parms.txt
│ └── train.py
├── peer-reviews
│ ├── first_peer_review_Prophet.pdf
│ ├── Firtst_peer_review_DVT.pdf
│ ├── Firtst_peer_review_Feature_selection.pdf
│ └── README.md
├── README.md
└── reports
└── first_report.pdf
Nikita Balabin (50%) – Refactoring the two methods with PyTorch Lightning as the main framework for the library. Introduction of Ray to optimize all hyperparameters. + Main implementations. Oleg Maslov (50%) – Introduction the unit testing and provide a test coverage of 70% of the codebase. Creation of the necessary documentation for the API using readthedocs. Providing notebooks with examples on how to run each method. + Main implementations.