Skip to content

acdh-oeaw/VELD_registry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VELD registry

This is a living collection of VELD repositories and their contained velds.

The technical concept for the VELD design can be found here: https://zenodo.org/records/13318651

data velds

code velds

  • https://github.com/acdh-oeaw/veld_code_3_apis_ner_evaluate_old_models
    • veld.yaml
      • valid: False, is not list, but <class 'dict'>, at: /x-veld/code/inputs/
  • https://github.com/acdh-oeaw/veld_code_4_apis_ner_transform_to_gold
    • veld.yaml
      • valid: True
      • metadata:
        • description: hard-coded conversion of apis ner models to custom json format.
        • topics: ETL, data cleaning
        • inputs:
          • 1:
            • description: This input is hard-wired to the apis spacy-ner repo and not made for generic usage.
            • file_type: pickle, txt, json
            • contents: NER gold data
        • outputs:
          • 1:
            • description: raw uncleaned, as it was originally. Now just transformed to json.
            • file_type: json
            • contents: NER gold data
          • 2:
            • description: removed empty entity annotations and fixed border issues.
            • file_type: json
            • contents: NER gold data
          • 3:
            • description: additionally to cleaning, this data is slimmed down from superfluous entity ids in favor of simplified entity classes.
            • file_type: json
            • contents: NER gold data
          • 4:
            • file_type: txt
  • https://github.com/acdh-oeaw/veld_code_5_simple_docker_test
    • veld.yaml
      • valid: True
      • metadata:
        • description: prints information about the python intepreter within the docker container.
        • topics: testing
  • https://github.com/acdh-oeaw/veld_code_7_train_spacy_ner
    • veld_convert.yaml
      • valid: True
      • metadata:
        • description: prepare data for spacy NER training, since spacy expects the entity annotation indices to be precisely at the beginning and end of the words, and also no overlapping entity annotations. Then it converts the data to spaCy docbin, and prepares it for training by splitting it into train, dev, eval subsets, and shuffling them randomly.
        • topics: ETL, NLP, Machine learning
        • inputs:
          • 1:
            • description: path to csv file, containing NER gold data
            • file_type: json
            • contents: NER gold data
        • outputs:
          • 1:
            • description: path to spacy docbin file, containing NER gold data and spacy nlp data
            • file_type: spacy docbin
            • contents: NER gold data
    • veld_train.yaml
      • valid: True
      • metadata:
        • description: A NER trainig setup, utilizing spaCy 3's config system.
        • topics: NLP, Machine learning, Named entity recognition
        • inputs:
          • 1:
            • file_type: spacy docbin
            • contents: NER gold data
          • 2:
            • file_type: spacy docbin
            • contents: NER gold data
          • 3:
            • file_type: spacy docbin
            • contents: NER gold data
        • outputs:
          • 1:
            • description: path to the spacy model
            • file_type: spacy model
            • contents: NLP model
          • 2:
            • description: path to the train log file
            • file_type: txt
            • contents: logs
          • 3:
            • description: path to the eval log file
            • file_type: txt
            • contents: logs
  • https://github.com/acdh-oeaw/veld_code_9_jupyter_notebook_base
    • veld.yaml
      • valid: True
      • metadata:
        • description: template veld code repo for a juptyer notebook
  • https://github.com/acdh-oeaw/veld_code_10_akp_ner
    • veld.yaml
      • valid: True
      • metadata:
        • description: apply NER models on linkedcat data for usage of the inferenced entites in the AKP project
        • topics: NLP, Machine learning, Named entity recognition
        • inputs:
          • 1:
            • file_type: spacy model
            • contents: NLP model, NER model
        • outputs:
          • 1:
            • description: inferenced NLP / NER data.
            • file_type: csv
            • contents: inferenced NLP data, NLP data, NER data
  • https://github.com/acdh-oeaw/veld_code_11_publish_to_hf
  • https://github.com/acdh-oeaw/veld_code_12_fasttext
    • veld_jupyter_notebook.yaml
      • valid: True
      • metadata:
        • description: a fasttext training and inference jupyter notebook.
        • topics: NLP, Machine Learning, word embeddings
    • veld_train.yaml
      • valid: True
      • metadata:
        • description: a fasttext training and inference jupyter notebook.
        • topics: NLP, Machine Learning, word embeddings
        • inputs:
          • 1:
            • description: training data must be expressed as one sentence per line.
            • file_type: txt
            • contents: raw text
        • outputs:
          • 1:
            • file_type: bin, fasttext model
            • contents: fasttext model, word embeddings
  • https://github.com/acdh-oeaw/veld_code_13_word2vec
    • veld_jupyter_notebook.yaml
      • valid: True
      • metadata:
        • description: a word2vec jupyter notebook, for quick experiments
        • topics: NLP, Machine Learning, word embeddings
        • inputs:
          • 1:
            • description: arbitrary storage for word2vec experiments
            • file_type: word2vec model, training data, NLP training data, raw text
            • contents: NLP model, word embeddings model, model metadata, NLP training data, word embeddings training data, raw text
        • outputs:
          • 1:
            • description: arbitrary storage for word2vec experiments
    • veld_train.yaml
      • valid: True
      • metadata:
        • description: word2vec training setup
        • topics: NLP, Machine Learning, word embeddings
        • inputs:
          • 1:
            • description: training data. Must be one single txt file, one sentence per line.
            • file_type: txt
            • contents: NLP training data, word embeddings training data, raw text
        • outputs:
          • 1:
            • description: self trained word embeddings word2vec model
            • file_type: word2vec model
            • contents: NLP model, word embeddings model
  • https://github.com/acdh-oeaw/veld_code_14_we_evaluation
    • veld_analyse_evaluation.yaml
      • valid: True
      • metadata:
        • description: data visualization of all evaluation data. In a jupyter notebook.
        • topics: NLP, word embeddings, data visualization
        • inputs:
          • 1:
            • description: summary of the custom evaluation logic on word embeddings
            • file_type: yaml
            • contents: evaluation data
        • outputs:
          • 1:
            • description: data visualization of all evaluation data, expressed as interactive html
            • file_type: html
            • contents: data visualization
          • 2:
            • description: data visualization of all evaluation data, expressed as png
            • file_type: png
            • contents: data visualization
    • veld_analyse_evaluation_non_interactive.yaml
      • valid: True
      • metadata:
        • description: data visualization of all evaluation data. non-interactive version of the juypter code.
        • topics: NLP, word embeddings, data visualization
        • inputs:
          • 1:
            • description: summary of the custom evaluation logic on word embeddings
            • file_type: yaml
            • contents: evaluation data
        • outputs:
          • 1:
            • description: data visualization of all evaluation data, expressed as interactive html
            • file_type: html
            • contents: data visualization
          • 2:
            • description: data visualization of all evaluation data, expressed as png
            • file_type: png
            • contents: data visualization
    • veld_eval_fasttext.yaml
      • valid: True
      • metadata:
        • description: custom evaluation logic on fasttext word embeddings.
        • topics: NLP, Machine learning, evaluation
        • inputs:
          • 1:
            • file_type: fasttext model
            • contents: NLP model, word embeddings model
          • 2:
            • file_type: yaml
            • contents: metadata
          • 3:
            • file_type: yaml
            • contents: NLP gold data
        • outputs:
          • 1:
            • file_type: yaml
          • 2:
            • file_type: txt
            • contents: logs
    • veld_eval_glove.yaml
      • valid: True
      • metadata:
        • description: custom evaluation logic on GloVe word embeddings.
        • topics: NLP, Machine learning, evaluation
        • inputs:
          • 1:
            • file_type: GloVe vector model
            • contents: NLP model, word embeddings model
          • 2:
            • file_type: yaml
            • contents: metadata
          • 3:
            • file_type: yaml
            • contents: NLP gold data
        • outputs:
          • 1:
            • file_type: yaml
          • 2:
            • file_type: txt
            • contents: logs
    • veld_eval_word2vec.yaml
      • valid: True
      • metadata:
        • description: custom evaluation logic on word2vec word embeddings.
        • topics: NLP, Machine learning, evaluation
        • inputs:
          • 1:
            • description: word2vec model file to be evaluated
            • file_type: word2vec model
            • contents: NLP model, word embeddings model
          • 2:
            • description: word2vec model metadata
            • file_type: yaml
            • contents: metadata
          • 3:
            • file_type: yaml
            • contents: NLP gold data
        • outputs:
          • 1:
            • file_type: yaml
          • 2:
            • file_type: txt
            • contents: logs
  • https://github.com/acdh-oeaw/veld_code_15_udpipe
  • https://github.com/acdh-oeaw/veld_code_16_xml_xslt_transformer
    • veld.yaml
      • valid: False, elements not matching anything at: /x-veld/code/inputs/0/optional
  • https://github.com/acdh-oeaw/veld_code_17_glove
    • veld_jupyter_notebook.yaml
      • valid: True
      • metadata:
        • description: A jupyter notebook that loads GloVe vectors and provides some convenient functions to use them.
        • topics: NLP, Machine learning, word embeddings
    • veld_train.yaml
      • valid: False, elements not matching anything at: /x-veld/code/settings/0/type
  • https://github.com/acdh-oeaw/veld_code_18_clscorgi
  • https://github.com/acdh-oeaw/veld_code_19_we_preprocessing
    • veld_preprocess_clean.yaml
      • valid: True
      • metadata:
        • description: Removes lines that don't reach a threshold regarding the ratio of textual content to non-textual (numbers, special characters) content. Splits output into clean and dirty file.
        • topics: NLP, preprocessing, ETL
        • inputs:
          • 1:
            • file_type: txt
            • contents: raw text
        • outputs:
          • 1:
            • description: clean lines, where each line's ratio is above the configured threshold
            • file_type: txt
            • contents: raw text
          • 2:
            • description: dirty lines, where each line's ratio is below the configured threshold
            • file_type: txt
            • contents: raw text
    • veld_preprocess_lowercase.yaml
      • valid: True
      • metadata:
        • description: makes entire text lowercase
        • topics: NLP, preprocessing, ETL
        • inputs:
          • 1:
            • file_type: txt
            • contents: raw text
        • outputs:
          • 1:
            • file_type: txt
            • contents: raw text
    • veld_preprocess_remove_punctuation.yaml
      • valid: True
      • metadata:
        • description: removes punctuation from text with spaCy pretrained models
        • topics: NLP, preprocessing, ETL
        • inputs:
          • 1:
            • file_type: txt
            • contents: raw text
        • outputs:
          • 1:
            • file_type: txt
            • contents: raw text
    • veld_preprocess_sample.yaml
      • valid: True
      • metadata:
        • description: takes a random sample of lines from a txt file. Randomness can be set with a seed too
        • topics: NLP, preprocessing, ETL
        • inputs:
          • 1:
            • file_type: txt
            • contents: raw text
        • outputs:
          • 1:
            • file_type: txt
            • contents: raw text
    • veld_preprocess_strip.yaml
      • valid: True
      • metadata:
        • description: removes all lines before and after given line numbers
        • topics: NLP, preprocessing, ETL
        • inputs:
          • 1:
            • file_type: txt
            • contents: raw text
        • outputs:
          • 1:
            • file_type: txt
            • contents: raw text
  • https://github.com/acdh-oeaw/veld_code_20_wikipedia_nlp_preprocessing
    • veld_download_and_extract.yaml
      • valid: True
      • metadata:
        • description: downloading wikipedia archive and extracting each article to a json file.
        • topics: NLP, Machine Learning, ETL
        • outputs:
          • 1:
            • description: a folder containing json files, where each file contains the contents of a wikipedia article
            • file_type: json
            • contents: NLP training data, raw text
    • veld_transform_wiki_json_to_txt.yaml
      • valid: True
      • metadata:
        • description: transforming wikipedia raw jsons to a single txt file.
        • topics: NLP, Machine Learning, ETL
        • inputs:
          • 1:
            • description: a folder containing json files, where each file contains the contents of a wikipedia article
            • file_type: json
            • contents: NLP training data, raw text
        • outputs:
          • 1:
            • description: single txt file, containing only raw content of wikipedia pagaes, split into sentences or per article with a newline each, possibly being only a sampled subset for testing.
            • file_type: txt
            • contents: NLP training data, word embeddings training data, raw text

chain velds

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published