Skip to content

Commit

Permalink
Merge pull request Pyomo#3036 from sadavis1/logarithmic_pwlinear
Browse files Browse the repository at this point in the history
Piecewise Linear transformations: Logarithmic and nested inner GDP representation
  • Loading branch information
blnicho authored May 8, 2024
2 parents a44a832 + 8ebd61c commit 12bcecf
Show file tree
Hide file tree
Showing 11 changed files with 926 additions and 77 deletions.
6 changes: 6 additions & 0 deletions pyomo/contrib/piecewise/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,9 @@
from pyomo.contrib.piecewise.transform.convex_combination import (
ConvexCombinationTransformation,
)
from pyomo.contrib.piecewise.transform.nested_inner_repn import (
NestedInnerRepresentationGDPTransformation,
)
from pyomo.contrib.piecewise.transform.disaggregated_logarithmic import (
DisaggregatedLogarithmicMIPTransformation,
)
80 changes: 80 additions & 0 deletions pyomo/contrib/piecewise/tests/common_inner_repn_tests.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright (c) 2008-2024
# National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________

from pyomo.core import Var
from pyomo.core.base import Constraint
from pyomo.core.expr.compare import assertExpressionsEqual

# This file contains check methods shared between GDP inner representation-based
# transformations. Currently, those are the inner_representation_gdp and
# nested_inner_repn_gdp transformations, since each have disjuncts with the
# same structure.


# Check one disjunct from the log model for proper contents
def check_log_disjunct(test, d, pts, f, substitute_var, x):
test.assertEqual(len(d.component_map(Constraint)), 3)
# lambdas and indicator_var
test.assertEqual(len(d.component_map(Var)), 2)
test.assertIsInstance(d.lambdas, Var)
test.assertEqual(len(d.lambdas), 2)
for lamb in d.lambdas.values():
test.assertEqual(lamb.lb, 0)
test.assertEqual(lamb.ub, 1)
test.assertIsInstance(d.convex_combo, Constraint)
assertExpressionsEqual(test, d.convex_combo.expr, d.lambdas[0] + d.lambdas[1] == 1)
test.assertIsInstance(d.set_substitute, Constraint)
assertExpressionsEqual(
test, d.set_substitute.expr, substitute_var == f(x), places=7
)
test.assertIsInstance(d.linear_combo, Constraint)
test.assertEqual(len(d.linear_combo), 1)
assertExpressionsEqual(
test, d.linear_combo[0].expr, x == pts[0] * d.lambdas[0] + pts[1] * d.lambdas[1]
)


# Check one disjunct from the paraboloid model for proper contents.
def check_paraboloid_disjunct(test, d, pts, f, substitute_var, x1, x2):
test.assertEqual(len(d.component_map(Constraint)), 3)
# lambdas and indicator_var
test.assertEqual(len(d.component_map(Var)), 2)
test.assertIsInstance(d.lambdas, Var)
test.assertEqual(len(d.lambdas), 3)
for lamb in d.lambdas.values():
test.assertEqual(lamb.lb, 0)
test.assertEqual(lamb.ub, 1)
test.assertIsInstance(d.convex_combo, Constraint)
assertExpressionsEqual(
test, d.convex_combo.expr, d.lambdas[0] + d.lambdas[1] + d.lambdas[2] == 1
)
test.assertIsInstance(d.set_substitute, Constraint)
assertExpressionsEqual(
test, d.set_substitute.expr, substitute_var == f(x1, x2), places=7
)
test.assertIsInstance(d.linear_combo, Constraint)
test.assertEqual(len(d.linear_combo), 2)
assertExpressionsEqual(
test,
d.linear_combo[0].expr,
x1
== pts[0][0] * d.lambdas[0]
+ pts[1][0] * d.lambdas[1]
+ pts[2][0] * d.lambdas[2],
)
assertExpressionsEqual(
test,
d.linear_combo[1].expr,
x2
== pts[0][1] * d.lambdas[0]
+ pts[1][1] * d.lambdas[1]
+ pts[2][1] * d.lambdas[2],
)
275 changes: 275 additions & 0 deletions pyomo/contrib/piecewise/tests/test_disaggregated_logarithmic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright (c) 2008-2024
# National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________

import pyomo.common.unittest as unittest
from pyomo.contrib.piecewise.tests import models
import pyomo.contrib.piecewise.tests.common_tests as ct
from pyomo.core.base import TransformationFactory
from pyomo.environ import SolverFactory, Var, Constraint
from pyomo.core.expr.compare import assertExpressionsEqual


class TestTransformPiecewiseModelToNestedInnerRepnMIP(unittest.TestCase):
def check_pw_log(self, m):
z = m.pw_log.get_transformation_var(m.log_expr)
self.assertIsInstance(z, Var)
# Now we can use those Vars to check on what the transformation created
log_block = z.parent_block()

# We should have three Vars, two of which are indexed, and five
# Constraints, three of which are indexed

self.assertEqual(len(log_block.component_map(Var)), 3)
self.assertEqual(len(log_block.component_map(Constraint)), 5)

# Constants
simplex_count = 3
log_simplex_count = 2
simplex_point_count = 2

# Substitute var
self.assertIsInstance(log_block.substitute_var, Var)
self.assertIs(m.obj.expr.expr, log_block.substitute_var)
# Binaries
self.assertIsInstance(log_block.binaries, Var)
self.assertEqual(len(log_block.binaries), log_simplex_count)
# Lambdas
self.assertIsInstance(log_block.lambdas, Var)
self.assertEqual(len(log_block.lambdas), simplex_count * simplex_point_count)
for l in log_block.lambdas.values():
self.assertEqual(l.lb, 0)
self.assertEqual(l.ub, 1)

# Convex combo constraint
self.assertIsInstance(log_block.convex_combo, Constraint)
assertExpressionsEqual(
self,
log_block.convex_combo.expr,
log_block.lambdas[0, 0]
+ log_block.lambdas[0, 1]
+ log_block.lambdas[1, 0]
+ log_block.lambdas[1, 1]
+ log_block.lambdas[2, 0]
+ log_block.lambdas[2, 1]
== 1,
)

# Set substitute constraint
self.assertIsInstance(log_block.set_substitute, Constraint)
assertExpressionsEqual(
self,
log_block.set_substitute.expr,
log_block.substitute_var
== log_block.lambdas[0, 0] * m.f1(1)
+ log_block.lambdas[1, 0] * m.f2(3)
+ log_block.lambdas[2, 0] * m.f3(6)
+ log_block.lambdas[0, 1] * m.f1(3)
+ log_block.lambdas[1, 1] * m.f2(6)
+ log_block.lambdas[2, 1] * m.f3(10),
places=7,
)

# x constraint
self.assertIsInstance(log_block.x_constraint, Constraint)
# one-dimensional case, so there is only one x variable here
self.assertEqual(len(log_block.x_constraint), 1)
assertExpressionsEqual(
self,
log_block.x_constraint[0].expr,
m.x
== 1 * log_block.lambdas[0, 0]
+ 3 * log_block.lambdas[0, 1]
+ 3 * log_block.lambdas[1, 0]
+ 6 * log_block.lambdas[1, 1]
+ 6 * log_block.lambdas[2, 0]
+ 10 * log_block.lambdas[2, 1],
)

# simplex choice 1 constraint enables lambdas when binaries are on
self.assertEqual(len(log_block.simplex_choice_1), log_simplex_count)
assertExpressionsEqual(
self,
log_block.simplex_choice_1[0].expr,
log_block.lambdas[2, 0] + log_block.lambdas[2, 1] <= log_block.binaries[0],
)
assertExpressionsEqual(
self,
log_block.simplex_choice_1[1].expr,
log_block.lambdas[1, 0] + log_block.lambdas[1, 1] <= log_block.binaries[1],
)
# simplex choice 2 constraint enables lambdas when binaries are off
self.assertEqual(len(log_block.simplex_choice_2), log_simplex_count)
assertExpressionsEqual(
self,
log_block.simplex_choice_2[0].expr,
log_block.lambdas[0, 0]
+ log_block.lambdas[0, 1]
+ log_block.lambdas[1, 0]
+ log_block.lambdas[1, 1]
<= 1 - log_block.binaries[0],
)
assertExpressionsEqual(
self,
log_block.simplex_choice_2[1].expr,
log_block.lambdas[0, 0]
+ log_block.lambdas[0, 1]
+ log_block.lambdas[2, 0]
+ log_block.lambdas[2, 1]
<= 1 - log_block.binaries[1],
)

def check_pw_paraboloid(self, m):
# This is a little larger, but at least test that the right numbers of
# everything are created
z = m.pw_paraboloid.get_transformation_var(m.paraboloid_expr)
self.assertIsInstance(z, Var)
paraboloid_block = z.parent_block()

self.assertEqual(len(paraboloid_block.component_map(Var)), 3)
self.assertEqual(len(paraboloid_block.component_map(Constraint)), 5)

# Constants
simplex_count = 4
log_simplex_count = 2
simplex_point_count = 3

# Substitute var
self.assertIsInstance(paraboloid_block.substitute_var, Var)
# Binaries
self.assertIsInstance(paraboloid_block.binaries, Var)
self.assertEqual(len(paraboloid_block.binaries), log_simplex_count)
# Lambdas
self.assertIsInstance(paraboloid_block.lambdas, Var)
self.assertEqual(
len(paraboloid_block.lambdas), simplex_count * simplex_point_count
)
for l in paraboloid_block.lambdas.values():
self.assertEqual(l.lb, 0)
self.assertEqual(l.ub, 1)

# Convex combo constraint
self.assertIsInstance(paraboloid_block.convex_combo, Constraint)
assertExpressionsEqual(
self,
paraboloid_block.convex_combo.expr,
paraboloid_block.lambdas[0, 0]
+ paraboloid_block.lambdas[0, 1]
+ paraboloid_block.lambdas[0, 2]
+ paraboloid_block.lambdas[1, 0]
+ paraboloid_block.lambdas[1, 1]
+ paraboloid_block.lambdas[1, 2]
+ paraboloid_block.lambdas[2, 0]
+ paraboloid_block.lambdas[2, 1]
+ paraboloid_block.lambdas[2, 2]
+ paraboloid_block.lambdas[3, 0]
+ paraboloid_block.lambdas[3, 1]
+ paraboloid_block.lambdas[3, 2]
== 1,
)

# Set substitute constraint
self.assertIsInstance(paraboloid_block.set_substitute, Constraint)
assertExpressionsEqual(
self,
paraboloid_block.set_substitute.expr,
paraboloid_block.substitute_var
== paraboloid_block.lambdas[0, 0] * m.g1(0, 1)
+ paraboloid_block.lambdas[1, 0] * m.g1(0, 1)
+ paraboloid_block.lambdas[2, 0] * m.g2(3, 4)
+ paraboloid_block.lambdas[3, 0] * m.g2(0, 7)
+ paraboloid_block.lambdas[0, 1] * m.g1(0, 4)
+ paraboloid_block.lambdas[1, 1] * m.g1(3, 4)
+ paraboloid_block.lambdas[2, 1] * m.g2(3, 7)
+ paraboloid_block.lambdas[3, 1] * m.g2(0, 4)
+ paraboloid_block.lambdas[0, 2] * m.g1(3, 4)
+ paraboloid_block.lambdas[1, 2] * m.g1(3, 1)
+ paraboloid_block.lambdas[2, 2] * m.g2(0, 7)
+ paraboloid_block.lambdas[3, 2] * m.g2(3, 4),
places=7,
)

# x constraint
self.assertIsInstance(paraboloid_block.x_constraint, Constraint)
# Here we have two x variables
self.assertEqual(len(paraboloid_block.x_constraint), 2)
assertExpressionsEqual(
self,
paraboloid_block.x_constraint[0].expr,
m.x1
== 0 * paraboloid_block.lambdas[0, 0]
+ 0 * paraboloid_block.lambdas[0, 1]
+ 3 * paraboloid_block.lambdas[0, 2]
+ 0 * paraboloid_block.lambdas[1, 0]
+ 3 * paraboloid_block.lambdas[1, 1]
+ 3 * paraboloid_block.lambdas[1, 2]
+ 3 * paraboloid_block.lambdas[2, 0]
+ 3 * paraboloid_block.lambdas[2, 1]
+ 0 * paraboloid_block.lambdas[2, 2]
+ 0 * paraboloid_block.lambdas[3, 0]
+ 0 * paraboloid_block.lambdas[3, 1]
+ 3 * paraboloid_block.lambdas[3, 2],
)
assertExpressionsEqual(
self,
paraboloid_block.x_constraint[1].expr,
m.x2
== 1 * paraboloid_block.lambdas[0, 0]
+ 4 * paraboloid_block.lambdas[0, 1]
+ 4 * paraboloid_block.lambdas[0, 2]
+ 1 * paraboloid_block.lambdas[1, 0]
+ 4 * paraboloid_block.lambdas[1, 1]
+ 1 * paraboloid_block.lambdas[1, 2]
+ 4 * paraboloid_block.lambdas[2, 0]
+ 7 * paraboloid_block.lambdas[2, 1]
+ 7 * paraboloid_block.lambdas[2, 2]
+ 7 * paraboloid_block.lambdas[3, 0]
+ 4 * paraboloid_block.lambdas[3, 1]
+ 4 * paraboloid_block.lambdas[3, 2],
)

# The choices will get long, so let's just assert we have enough
self.assertEqual(len(paraboloid_block.simplex_choice_1), log_simplex_count)
self.assertEqual(len(paraboloid_block.simplex_choice_2), log_simplex_count)

# Test methods using the common_tests.py code.
def test_transformation_do_not_descend(self):
ct.check_transformation_do_not_descend(
self, 'contrib.piecewise.disaggregated_logarithmic'
)

def test_transformation_PiecewiseLinearFunction_targets(self):
ct.check_transformation_PiecewiseLinearFunction_targets(
self, 'contrib.piecewise.disaggregated_logarithmic'
)

def test_descend_into_expressions(self):
ct.check_descend_into_expressions(
self, 'contrib.piecewise.disaggregated_logarithmic'
)

def test_descend_into_expressions_constraint_target(self):
ct.check_descend_into_expressions_constraint_target(
self, 'contrib.piecewise.disaggregated_logarithmic'
)

def test_descend_into_expressions_objective_target(self):
ct.check_descend_into_expressions_objective_target(
self, 'contrib.piecewise.disaggregated_logarithmic'
)

# Check solution of the log(x) model
@unittest.skipUnless(SolverFactory('gurobi').available(), 'Gurobi is not available')
@unittest.skipUnless(SolverFactory('gurobi').license_is_valid(), 'No license')
def test_solve_log_model(self):
m = models.make_log_x_model()
TransformationFactory("contrib.piecewise.disaggregated_logarithmic").apply_to(m)
SolverFactory("gurobi").solve(m)
ct.check_log_x_model_soln(self, m)
Loading

0 comments on commit 12bcecf

Please sign in to comment.