Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add modal integration for STT model #1094

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
321 changes: 28 additions & 293 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,316 +1,51 @@
[![CI](https://github.com/SYSTRAN/faster-whisper/workflows/CI/badge.svg)](https://github.com/SYSTRAN/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
# Large V3 Faster Whisper Modal Deployment On Modal.com

# Faster Whisper transcription with CTranslate2
A FastAPI-based server that uses [Faster Whisper](https://github.com/guillaumekln/faster-whisper) for speech-to-text transcription, deployed on [modal.com](https://modal.com). This guide walks you through cloning, setting up, and deploying the server.

**faster-whisper** is a reimplementation of OpenAI's Whisper model using [CTranslate2](https://github.com/OpenNMT/CTranslate2/), which is a fast inference engine for Transformer models.
---

This implementation is up to 4 times faster than [openai/whisper](https://github.com/openai/whisper) for the same accuracy while using less memory. The efficiency can be further improved with 8-bit quantization on both CPU and GPU.
## Prerequisites

## Benchmark
- **Python 3.x**
- **[Modal Account](https://modal.com)** for deployment

### Whisper
---

For reference, here's the time and memory usage that are required to transcribe [**13 minutes**](https://www.youtube.com/watch?v=0u7tTptBo9I) of audio using different implementations:
## Installation Guide

* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
* [whisper.cpp](https://github.com/ggerganov/whisper.cpp)@[3b010f9](https://github.com/ggerganov/whisper.cpp/commit/3b010f9bed9a6068609e9faf52383aea792b0362)
* [faster-whisper](https://github.com/SYSTRAN/faster-whisper)@[cce6b53e](https://github.com/SYSTRAN/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
### 1. Clone the Repository

### Large-v2 model on GPU

| Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
| --- | --- | --- | --- | --- | --- |
| openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
| faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
| faster-whisper | int8 | 5 | 59s | 3091MB | 3117MB |

*Executed with CUDA 11.7.1 on a NVIDIA Tesla V100S.*

### Small model on CPU

| Implementation | Precision | Beam size | Time | Max. memory |
| --- | --- | --- | --- | --- |
| openai/whisper | fp32 | 5 | 10m31s | 3101MB |
| whisper.cpp | fp32 | 5 | 17m42s | 1581MB |
| whisper.cpp | fp16 | 5 | 12m39s | 873MB |
| faster-whisper | fp32 | 5 | 2m44s | 1675MB |
| faster-whisper | int8 | 5 | 2m04s | 995MB |

*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*


### Distil-whisper

| Implementation | Precision | Beam size | Time | Gigaspeech WER |
| --- | --- | --- | --- | --- |
| distil-whisper/distil-large-v2 | fp16 | 4 |- | 10.36 |
| [faster-distil-large-v2](https://huggingface.co/Systran/faster-distil-whisper-large-v2) | fp16 | 5 | - | 10.28 |
| distil-whisper/distil-medium.en | fp16 | 4 | - | 11.21 |
| [faster-distil-medium.en](https://huggingface.co/Systran/faster-distil-whisper-medium.en) | fp16 | 5 | - | 11.21 |

*Executed with CUDA 11.4 on a NVIDIA 3090.*

<details>
<summary>testing details (click to expand)</summary>

For `distil-whisper/distil-large-v2`, the WER is tested with code sample from [link](https://huggingface.co/distil-whisper/distil-large-v2#evaluation). for `faster-distil-whisper`, the WER is tested with setting:
```python
from faster_whisper import WhisperModel

model_size = "distil-large-v2"
# model_size = "distil-medium.en"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
```
</details>

## Requirements

* Python 3.8 or greater


### GPU

GPU execution requires the following NVIDIA libraries to be installed:

* [cuBLAS for CUDA 12](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 12](https://developer.nvidia.com/cudnn)

**Note**: Latest versions of `ctranslate2` support CUDA 12 only. For CUDA 11, the current workaround is downgrading to the `3.24.0` version of `ctranslate2` (This can be done with `pip install --force-reinstall ctranslate2==3.24.0` or specifying the version in a `requirements.txt`).

There are multiple ways to install the NVIDIA libraries mentioned above. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.

<details>
<summary>Other installation methods (click to expand)</summary>


**Note:** For all these methods below, keep in mind the above note regarding CUDA versions. Depending on your setup, you may need to install the _CUDA 11_ versions of libraries that correspond to the CUDA 12 libraries listed in the instructions below.

#### Use Docker

The libraries (cuBLAS, cuDNN) are installed in these official NVIDIA CUDA Docker images: `nvidia/cuda:12.0.0-runtime-ubuntu20.04` or `nvidia/cuda:12.0.0-runtime-ubuntu22.04`.

#### Install with `pip` (Linux only)

On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
Clone the `faster-whisper-modal` repository to your local machine:

```bash
pip install nvidia-cublas-cu12 nvidia-cudnn-cu12

export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
```

**Note**: Version 9+ of `nvidia-cudnn-cu12` appears to cause issues due its reliance on cuDNN 9 (Faster-Whisper does not currently support cuDNN 9). Ensure your version of the Python package is for cuDNN 8.

#### Download the libraries from Purfview's repository (Windows & Linux)

Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.

</details>

## Installation

The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/):

```bash
pip install faster-whisper
git clone https://github.com/SYSTRAN/faster-whisper.git
cd faster-whisper-modal
```

<details>
<summary>Other installation methods (click to expand)</summary>

### Install the master branch

```bash
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/refs/heads/master.tar.gz"
```

### Install a specific commit
### 2. Install the Modal SDK
Install the Modal SDK for deploying applications to the Modal cloud:

```bash
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
```

</details>

## Usage

### Faster-whisper

```python
from faster_whisper import WhisperModel

model_size = "large-v3"

# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")

# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")

segments, info = model.transcribe("audio.mp3", beam_size=5)

print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```

**Warning:** `segments` is a *generator* so the transcription only starts when you iterate over it. The transcription can be run to completion by gathering the segments in a list or a `for` loop:

```python
segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```

### multi-segment language detection

To directly use the model for improved language detection, the following code snippet can be used:

```python
from faster_whisper import WhisperModel
model = WhisperModel("medium", device="cuda", compute_type="float16")
language_info = model.detect_language_multi_segment("audio.mp3")
```

### Batched faster-whisper

The following code snippet illustrates how to run inference with batched version on an example audio file. Please also refer to the test scripts of batched faster whisper.

```python
from faster_whisper import WhisperModel, BatchedInferencePipeline

model = WhisperModel("medium", device="cuda", compute_type="float16")
batched_model = BatchedInferencePipeline(model=model)
segments, info = batched_model.transcribe("audio.mp3", batch_size=16)

for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```

### Faster Distil-Whisper

The Distil-Whisper checkpoints are compatible with the Faster-Whisper package. In particular, the latest [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
checkpoint is intrinsically designed to work with the Faster-Whisper transcription algorithm. The following code snippet
demonstrates how to run inference with distil-large-v3 on a specified audio file:

```python
from faster_whisper import WhisperModel

model_size = "distil-large-v3"

model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en", condition_on_previous_text=False)

for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```

For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).

### Word-level timestamps

```python
segments, _ = model.transcribe("audio.mp3", word_timestamps=True)

for segment in segments:
for word in segment.words:
print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word))
pip install modal
```

### VAD filter

The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad) model to filter out parts of the audio without speech:

```python
segments, _ = model.transcribe("audio.mp3", vad_filter=True)
```

The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:

```python
segments, _ = model.transcribe(
"audio.mp3",
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500),
)
```

### Logging

The library logging level can be configured like this:

```python
import logging

logging.basicConfig()
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
```

### Going further

See more model and transcription options in the [`WhisperModel`](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.

## Community integrations

Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!


* [faster-whisper-server](https://github.com/fedirz/faster-whisper-server) is an OpenAI compatible server using `faster-whisper`. It's easily deployable with Docker, works with OpenAI SDKs/CLI, supports streaming, and live transcription.
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
* [aTrain](https://github.com/BANDAS-Center/aTrain) is a graphical user interface implementation of faster-whisper developed at the BANDAS-Center at the University of Graz for transcription and diarization in Windows ([Windows Store App](https://apps.microsoft.com/detail/atrain/9N15Q44SZNS2)) and Linux.
* [Whisper-Streaming](https://github.com/ufal/whisper_streaming) implements real-time mode for offline Whisper-like speech-to-text models with faster-whisper as the most recommended back-end. It implements a streaming policy with self-adaptive latency based on the actual source complexity, and demonstrates the state of the art.
* [WhisperLive](https://github.com/collabora/WhisperLive) is a nearly-live implementation of OpenAI's Whisper which uses faster-whisper as the backend to transcribe audio in real-time.
* [Faster-Whisper-Transcriber](https://github.com/BBC-Esq/ctranslate2-faster-whisper-transcriber) is a simple but reliable voice transcriber that provides a user-friendly interface.

## Model conversion

When loading a model from its size such as `WhisperModel("large-v3")`, the corresponding CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).

We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.

For example the command below converts the [original "large-v3" Whisper model](https://huggingface.co/openai/whisper-large-v3) and saves the weights in FP16:

### 3. Setup the Modal
Set up Modal authentication. This will open a browser window for you to authorize access to your Modal account:
```bash
pip install transformers[torch]>=4.23

ct2-transformers-converter --model openai/whisper-large-v3 --output_dir whisper-large-v3-ct2
--copy_files tokenizer.json preprocessor_config.json --quantization float16
python3 -m modal setup
```

* The option `--model` accepts a model name on the Hub or a path to a model directory.
* If the option `--copy_files tokenizer.json` is not used, the tokenizer configuration is automatically downloaded when the model is loaded later.

Models can also be converted from the code. See the [conversion API](https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html).

### Load a converted model

1. Directly load the model from a local directory:
```python
model = faster_whisper.WhisperModel("whisper-large-v3-ct2")
### 4. Deploying the App on Modal
Deploy the app on Modal and get the app link from terminal/Modal Dashboard
```bash
modal deploy app.py
```

2. [Upload your model to the Hugging Face Hub](https://huggingface.co/docs/transformers/model_sharing#upload-with-the-web-interface) and load it from its name:
```python
model = faster_whisper.WhisperModel("username/whisper-large-v3-ct2")
```

## Comparing performance against other implementations

If you are comparing the performance against other Whisper implementations, you should make sure to run the comparison with similar settings. In particular:
### 5. Test Deployed App:
After the code is deployed, retrieve the app link from the Modal.com Dashboard. The app link will look similar to:

* Verify that the same transcription options are used, especially the same beam size. For example in openai/whisper, `model.transcribe` uses a default beam size of 1 but here we use a default beam size of 5.
* When running on CPU, make sure to set the same number of threads. Many frameworks will read the environment variable `OMP_NUM_THREADS`, which can be set when running your script:

```bash
OMP_NUM_THREADS=4 python3 my_script.py
```
```bash
curl --location 'https://your-name--faster-whisper-server-fastapi-wrapper.modal.run/transcribe' \
--form 'file=@"/home/user/Desktop/locean-et-lhumanite-destins-lies-lamya-essemlali-tedxorleans-128-ytshorts.savetube.me.mp3"'
```
Loading
Loading