Skip to content

Commit

Permalink
QCAlgorithm's OptionChain() api refactor (#8334)
Browse files Browse the repository at this point in the history
* Fix pandas converter to handle list of data with different symbols

* Properly convert list of data into dataframe

Take into consideration data for multiple symbols in the same list

* Cleanup

* Index dataframes by symbol object instead of SID string

* Add symbol equality operator to compare against object

* Exclude "ID" from option chain dataframe

* Minor fix

* Add greeks columns directly in option chain dataframe.

Also add pass-through properties for greek values in OptionUniverse

* Some cleanup

* Minor fix

* Add new QCAlgorithm.OptionChains() method

- Use OptionChains as output
- Add DataFrame to OptionChain and OptionChains
- Rename Greeks classes
- Add ISymbolProvider for classes that have a symbol (IBaseData, OptionContract)

* Unify QCAlgorithmOptionChain API

Also refactor OptionContract to handle: (1) Actual market data and option price model data, and (2) OptionUniverse data

* Pass symbol properties to OptionUniverse option chain from algorithm

* Format OptionContract for dataframe

* Minor fix

* Add multiple option chains api regression algorithms and other minor changes

* Address peer review

Add NullGreeks class: keep ModeledGreeks as internal as possible

* Minor fix and add PandasConverter unit tests

* Peer review: Non-thread-safe Lazy for Python

* Handle Greeks unwrapping by PandasData

* PandasData cleanup

* Add data and other minor changes

* Unit test fix

* Update Pythonnet to 2.0.39

* Cleanup

* PandasData handling children class members

Address peer review

* Fix: indexing symbol conversion in pandas mapper

* Fix pandas mapper to convert string keys to symbol only when necessary

* Cleanup

* Cleanup

* Add PandasColumn python class to handle proper indexing

This allows propery hash and equality between Symbols, C# strings and Python strings

* Minor fixes

* Symbol cache improvements

* Minor fix for cache miss

* Revert PandasMapper reserved names and improvements

* Minor fix

* Revert reserved names

* Minor fix for Symbol equality operators

---------

Co-authored-by: Martin Molinero <[email protected]>
  • Loading branch information
jhonabreul and Martin-Molinero authored Oct 4, 2024
1 parent 7c9aa85 commit 0a9dc2c
Show file tree
Hide file tree
Showing 55 changed files with 2,261 additions and 745 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ public override void OnSecuritiesChanged(SecurityChanges changes)
&& optionContract.ID.OptionStyle == OptionStyle.American);
AddOptionContract(option);

foreach (var symbol in new[] { option.Symbol, option.Underlying.Symbol })
foreach (var symbol in new[] { option.Symbol, option.UnderlyingSymbol })
{
var config = SubscriptionManager.SubscriptionDataConfigService.GetSubscriptionDataConfigs(symbol).ToList();

Expand Down
142 changes: 142 additions & 0 deletions Algorithm.CSharp/OptionChainsMultipleFullDataRegressionAlgorithm.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/

using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Interfaces;
using QuantConnect.Securities;

namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm illustrating the usage of the <see cref="QCAlgorithm.OptionChains(IEnumerable{Symbol})"/> method
/// to get multiple option chains, which contains additional data besides the symbols, including prices, implied volatility and greeks.
/// It also shows how this data can be used to filter the contracts based on certain criteria.
/// </summary>
public class OptionChainsMultipleFullDataRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _googOptionContract;
private Symbol _spxOptionContract;

public override void Initialize()
{
SetStartDate(2015, 12, 24);
SetEndDate(2015, 12, 24);
SetCash(100000);

var goog = AddEquity("GOOG").Symbol;
var spx = AddIndex("SPX").Symbol;

var chains = OptionChains(new[] { goog, spx });

_googOptionContract = GetContract(chains, goog, TimeSpan.FromDays(10));
_spxOptionContract = GetContract(chains, spx, TimeSpan.FromDays(60));

AddOptionContract(_googOptionContract);
AddIndexOptionContract(_spxOptionContract);
}

private Symbol GetContract(OptionChains chains, Symbol underlying, TimeSpan expirySpan)
{
return chains
.Where(kvp => kvp.Key.Underlying == underlying)
.Select(kvp => kvp.Value)
.Single()
// Get contracts expiring within a given span, with an implied volatility greater than 0.5 and a delta less than 0.5
.Where(contractData => contractData.ID.Date - Time <= expirySpan &&
contractData.ImpliedVolatility > 0.5m &&
contractData.Greeks.Delta < 0.5m)
// Get the contract with the latest expiration date
.OrderByDescending(x => x.ID.Date)
.First();
}

public override void OnData(Slice slice)
{
// Do some trading with the selected contract for sample purposes
if (!Portfolio.Invested)
{
MarketOrder(_googOptionContract, 1);
}
else
{
Liquidate();
}
}

/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;

/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public virtual List<Language> Languages { get; } = new() { Language.CSharp, Language.Python };

/// <summary>
/// Data Points count of all timeslices of algorithm
/// </summary>
public long DataPoints => 1059;

/// <summary>
/// Data Points count of the algorithm history
/// </summary>
public int AlgorithmHistoryDataPoints => 2;

/// <summary>
/// Final status of the algorithm
/// </summary>
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;

/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Orders", "210"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "96041"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "0"},
{"Tracking Error", "0"},
{"Treynor Ratio", "0"},
{"Total Fees", "$209.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", "GOOCV W6U7PD1F2WYU|GOOCV VP83T1ZUHROL"},
{"Portfolio Turnover", "85.46%"},
{"OrderListHash", "a7ab1a9e64fe9ba76ea33a40a78a4e3b"}
};
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ public void CheckGreeks(OptionChain contracts)

foreach (var contract in contracts)
{
Greeks greeks = new Greeks();
Greeks greeks = null;
try
{
greeks = contract.Greeks;
Expand All @@ -110,7 +110,8 @@ public void CheckGreeks(OptionChain contracts)
// Greeks should be valid if they were successfuly accessed for supported option style
if (_optionStyleIsSupported)
{
if (greeks.Delta == 0m && greeks.Gamma == 0m && greeks.Theta == 0m && greeks.Vega == 0m && greeks.Rho == 0m)
if (greeks == null ||
(greeks.Delta == 0m && greeks.Gamma == 0m && greeks.Theta == 0m && greeks.Vega == 0m && greeks.Rho == 0m))
{
throw new RegressionTestException($"Expected greeks to not be zero simultaneously for {contract.Symbol.Value}, an {_option.Style} style option, using {_option?.PriceModel.GetType().Name}, but they were");
}
Expand Down
2 changes: 1 addition & 1 deletion Algorithm.CSharp/QuantConnect.Algorithm.CSharp.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
<DebugType>portable</DebugType>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="QuantConnect.pythonnet" Version="2.0.38" />
<PackageReference Include="QuantConnect.pythonnet" Version="2.0.39" />
<PackageReference Include="Accord" Version="3.6.0" />
<PackageReference Include="Accord.Fuzzy" Version="3.6.0" />
<PackageReference Include="Accord.MachineLearning" Version="3.6.0" />
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
<PackageLicenseFile>LICENSE</PackageLicenseFile>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="QuantConnect.pythonnet" Version="2.0.38" />
<PackageReference Include="QuantConnect.pythonnet" Version="2.0.39" />
<PackageReference Include="Accord" Version="3.6.0" />
<PackageReference Include="Accord.Math" Version="3.6.0" />
<PackageReference Include="Accord.Statistics" Version="3.6.0" />
Expand Down
17 changes: 10 additions & 7 deletions Algorithm.Python/OptionChainFullDataRegressionAlgorithm.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# limitations under the License.

from AlgorithmImports import *
from datetime import timedelta

### <summary>
### Regression algorithm illustrating the usage of the <see cref="QCAlgorithm.OptionChain(Symbol)"/> method
Expand All @@ -27,14 +28,16 @@ def initialize(self):

goog = self.add_equity("GOOG").symbol

option_chain = self.option_chain(goog)

# Demonstration using data frame:
df = option_chain.data_frame
# Get contracts expiring within 10 days, with an implied volatility greater than 0.5 and a delta less than 0.5
contracts = [
contract_data
for contract_data in self.option_chain(goog)
if contract_data.id.date - self.time <= timedelta(days=10) and contract_data.implied_volatility > 0.5 and contract_data.greeks.delta < 0.5
]
# Get the contract with the latest expiration date
self._option_contract = sorted(contracts, key=lambda x: x.id.date, reverse=True)[0]
contracts = df.loc[(df.expiry <= self.time + timedelta(days=10)) & (df.impliedvolatility > 0.5) & (df.delta < 0.5)]

# Get the contract with the latest expiration date.
# Note: the result of df.loc[] is a series, and its name is a tuple with a single element (contract symbol)
self._option_contract = contracts.loc[contracts.expiry.idxmax()].name[0]

self.add_option_contract(self._option_contract)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def initialize(self):
self.set_start_date(2014, 6, 6)
self.set_end_date(2014, 6, 6)
self.set_cash(100000)

universe = self.add_universe("my-minute-universe-name", lambda time: [ "AAPL", "TWX" ])
self.add_universe_selection(
OptionChainedUniverseSelectionModel(
Expand All @@ -34,9 +34,9 @@ def initialize(self):
.expiration(0, 180))
)
)

def on_data(self, slice):
if self.portfolio.invested or not (self.is_market_open("AAPL") and self.is_market_open("AAPL")): return
if self.portfolio.invested or not (self.is_market_open("AAPL") and self.is_market_open("TWX")): return
values = list(map(lambda x: x.value, filter(lambda x: x.key == "?AAPL" or x.key == "?TWX", slice.option_chains)))
for chain in values:
# we sort the contracts to find at the money (ATM) contract with farthest expiration
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *
from datetime import timedelta

### <summary>
### Regression algorithm illustrating the usage of the <see cref="QCAlgorithm.OptionChains(IEnumerable{Symbol})"/> method
### to get multiple option chains, which contains additional data besides the symbols, including prices, implied volatility and greeks.
### It also shows how this data can be used to filter the contracts based on certain criteria.
### </summary>
class OptionChainsMultipleFullDataRegressionAlgorithm(QCAlgorithm):

def initialize(self):
self.set_start_date(2015, 12, 24)
self.set_end_date(2015, 12, 24)
self.set_cash(100000)

goog = self.add_equity("GOOG").symbol
spx = self.add_index("SPX").symbol

chains = self.option_chains([goog, spx])

self._goog_option_contract = self.get_contract(chains, goog, timedelta(days=10))
self._spx_option_contract = self.get_contract(chains, spx, timedelta(days=60))

self.add_option_contract(self._goog_option_contract)
self.add_index_option_contract(self._spx_option_contract)

def get_contract(self, chains: OptionChains, underlying: Symbol, expiry_span: timedelta) -> Symbol:
df = chains.data_frame

# Index by the requested underlying, by getting all data with canonicals which underlying is the requested underlying symbol:
canonicals = df.index.get_level_values('canonical')
condition = [canonical for canonical in canonicals if canonical.underlying == underlying]
df = df.loc[condition]

# Get contracts expiring in the next 10 days with an implied volatility greater than 0.5 and a delta less than 0.5
contracts = df.loc[(df.expiry <= self.time + expiry_span) & (df.impliedvolatility > 0.5) & (df.delta < 0.5)]

# Select the contract with the latest expiry date
contracts.sort_values(by='expiry', ascending=False, inplace=True)

# Get the symbol: the resulting series name is a tuple (canonical symbol, contract symbol)
return contracts.iloc[0].name[1]

def on_data(self, data):
# Do some trading with the selected contract for sample purposes
if not self.portfolio.invested:
self.market_order(self._goog_option_contract, 1)
else:
self.liquidate()
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def check_greeks(self, contracts):
self._tried_greeks_calculation = True

for contract in contracts:
greeks = Greeks()
greeks = None
try:
greeks = contract.greeks

Expand All @@ -70,9 +70,10 @@ def check_greeks(self, contracts):
# Delta can be {-1, 0, 1} if the price is too wild, rho can be 0 if risk free rate is 0
# Vega can be 0 if the price is very off from theoretical price, Gamma = 0 if Delta belongs to {-1, 1}
if (self._option_style_is_supported
and ((contract.right == OptionRight.CALL and (greeks.delta < 0.0 or greeks.delta > 1.0 or greeks.rho < 0.0))
or (contract.right == OptionRight.PUT and (greeks.delta < -1.0 or greeks.delta > 0.0 or greeks.rho > 0.0))
or greeks.theta == 0.0 or greeks.vega < 0.0 or greeks.gamma < 0.0)):
and (greeks is None
or ((contract.right == OptionRight.CALL and (greeks.delta < 0.0 or greeks.delta > 1.0 or greeks.rho < 0.0))
or (contract.right == OptionRight.PUT and (greeks.delta < -1.0 or greeks.delta > 0.0 or greeks.rho > 0.0))
or greeks.theta == 0.0 or greeks.vega < 0.0 or greeks.gamma < 0.0))):
raise Exception(f'Expected greeks to have valid values. Greeks were: Delta: {greeks.delta}, Rho: {greeks.rho}, Theta: {greeks.theta}, Vega: {greeks.vega}, Gamma: {greeks.gamma}')


Expand Down
2 changes: 1 addition & 1 deletion Algorithm.Python/QuantConnect.Algorithm.Python.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@
<Compile Include="..\Common\Properties\SharedAssemblyInfo.cs" Link="Properties\SharedAssemblyInfo.cs" />
</ItemGroup>
<ItemGroup>
<PackageReference Include="QuantConnect.pythonnet" Version="2.0.38" />
<PackageReference Include="QuantConnect.pythonnet" Version="2.0.39" />
</ItemGroup>
<ItemGroup>
<Content Include="OptionUniverseFilterGreeksShortcutsRegressionAlgorithm.py" />
Expand Down
6 changes: 4 additions & 2 deletions Algorithm/QCAlgorithm.Indicators.cs
Original file line number Diff line number Diff line change
Expand Up @@ -498,7 +498,7 @@ public ChandeKrollStop CKS(Symbol symbol, int atrPeriod, decimal atrMult, int pe
InitializeIndicator(indicator, resolution, selector, symbol);
return indicator;
}

/// <summary>
/// Creates a new ChaikinMoneyFlow indicator.
/// </summary>
Expand Down Expand Up @@ -4004,7 +4004,9 @@ void consumeLastPoint(IndicatorDataPoint newInputPoint)
indicator.Updated -= callback;

return new IndicatorHistory(indicatorsDataPointsByTime, indicatorsDataPointPerProperty,
new Lazy<PyObject>(() => PandasConverter.GetIndicatorDataFrame(indicatorsDataPointPerProperty.Select(x => new KeyValuePair<string, List<IndicatorDataPoint>>(x.Name, x.Values)))));
new Lazy<PyObject>(
() => PandasConverter.GetIndicatorDataFrame(indicatorsDataPointPerProperty.Select(x => new KeyValuePair<string, List<IndicatorDataPoint>>(x.Name, x.Values))),
isThreadSafe: false));
}

private Type GetDataTypeFromSelector(Func<IBaseData, decimal> selector)
Expand Down
20 changes: 18 additions & 2 deletions Algorithm/QCAlgorithm.Python.cs
Original file line number Diff line number Diff line change
Expand Up @@ -1639,6 +1639,21 @@ public void AddCommand(PyObject type)
};
}


/// <summary>
/// Get the option chains for the specified symbols at the current time (<see cref="Time"/>)
/// </summary>
/// <param name="symbols">
/// The symbols for which the option chain is asked for.
/// It can be either the canonical options or the underlying symbols.
/// </param>
/// <returns>The option chains</returns>
[DocumentationAttribute(AddingData)]
public OptionChains OptionChains(PyObject symbols)
{
return OptionChains(symbols.ConvertToSymbolEnumerable());
}

/// <summary>
/// Get an authenticated link to execute the given command instance
/// </summary>
Expand Down Expand Up @@ -1770,8 +1785,9 @@ private PyObject TryCleanupCollectionDataFrame(Type dataType, PyObject history)
{
if (!dynamic.empty)
{
using PyObject columns = dynamic.columns;
if (columns.As<string[]>().Contains("data"))
using var columns = new PySequence(dynamic.columns);
using var dataKey = "data".ToPython();
if (columns.Contains(dataKey))
{
history = dynamic["data"];
}
Expand Down
Loading

0 comments on commit 0a9dc2c

Please sign in to comment.