Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimization changes #32

Merged
merged 2 commits into from
Jan 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/GGDUtils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@ module GGDUtils

using OMAS: OMAS

const inv_16pi = 1.0 / (16π)

export project_prop_on_subset!
export get_subset_centers
export get_prop_with_grid_subset_index
Expand Down
62 changes: 31 additions & 31 deletions src/interpolations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,11 +68,9 @@ minimizing bending energy of a surface.
http://www.geometrictools.com/Documentation/ThinPlateSplines.pdf Eq(28)
"""
function _G(x1::Tuple{U, U}, x2::Tuple{U, U}) where {U <: Real}
r = sqrt(sum((x1 .- x2) .^ 2))
if r == 0
return 0
end
return r^2 * log(r) / 8 / π
r2 = sum((x1 .- x2) .^ 2) # r²
# Note this uses log(r) / 8π = log(r²) / 16π
return (r2 == 0) ? zero(U) : r2 * log(r2) * inv_16pi
end

"""
Expand All @@ -87,21 +85,15 @@ minimum absolute value. This is done to avoid numerical issues with interpolatio
Return values are conditioned y and inverse conditioning function.
"""
function _condition_y(y::Vector{T}) where {T <: Real}
do_log = false
ylims = extrema(y)
if prod(ylims) > 0
if ylims[2] / ylims[1] > 100
do_log = true
end
end
if do_log
norm_by = minimum(abs.(ylims)) * sign(ylims[1])
return log10.(y ./ norm_by), (cy) -> (10 .^ (cy)) * norm_by
else
norm_by = ylims[2] - ylims[1]
mean_y = mean(y)
return (y .- mean_y) ./ norm_by, (cy) -> (cy .* norm_by) .+ mean_y
do_log = (prod(ylims) > 0) && (ylims[2] / ylims[1] > 100)
norm_by = do_log ? minimum(abs.(ylims)) * sign(ylims[1]) : ylims[2] - ylims[1]
mean_y = mean(y)
cy = do_log ? log10.(y ./ norm_by) : (y .- mean_y) ./ norm_by
inv_cy = let norm_by = norm_by, do_log = do_log, mean_y = mean_y
x -> do_log ? (10.0^x) * norm_by : (x * norm_by) + mean_y
end
return cy, inv_cy
end

"""
Expand Down Expand Up @@ -129,6 +121,12 @@ function get_TPS_mats(x::Vector{Tuple{U, U}}) where {U <: Real}
return Minv, N, (N' * Minv * N)^(-1) * N' * Minv, x
end

function get_interp_val(r, z, x, a, b, inv_cy)
tot = sum(a[k] * _G((r, z), x[k]) for k ∈ eachindex(a))
tot += b[1] + r * b[2] + z * b[3]
return inv_cy(tot)
end

"""
interp(
y::Vector{T},
Expand All @@ -147,11 +145,10 @@ function interp(
# From Eq(31)
b = y2b * cy
a = Minv * (cy - N * b)
function get_interp_val(r::Real, z::Real)
return inv_cy(sum(a .* [_G((r, z), xi) for xi ∈ x]) + sum(b .* [1, r, z]))
return let x = x, a = a, b = b, inv_cy = inv_cy
g(r, z) = get_interp_val(r, z, x, a, b, inv_cy)
g(gp::Tuple{V, V}) where {V <: Real} = g(gp...)
end
get_interp_val(gp::Tuple{V, V}) where {V <: Real} = get_interp_val(gp...)
return get_interp_val
end

"""
Expand Down Expand Up @@ -322,10 +319,11 @@ function interp(
prop_arr::Vector{T},
TPS_mats::Tuple{Matrix{U}, Matrix{U}, Matrix{U}, Vector{Tuple{U, U}}},
grid_subset_index::Int,
value_field::Symbol=:values,
) where {T <: edge_profiles__prop_on_subset, U <: Real}
value_field::Val{V}=Val(:values),
) where {T <: edge_profiles__prop_on_subset, U <: Real, V}
prop = get_prop_with_grid_subset_index(prop_arr, grid_subset_index)
return interp(getfield(prop, value_field), TPS_mats)
field = getfield(prop, V)
return interp(field, TPS_mats)
end

const RHO_EXT_POS = [1.0001, 1.1, 5]
Expand Down Expand Up @@ -363,9 +361,10 @@ function interp(eqt::OMAS.equilibrium__time_slice)
prepend!(rhon_eq_ext, RHO_EXT_NEG)
rz2psin = linear_interpolation((r_eq, z_eq), psinrz)
psin2rhon = linear_interpolation(psin_eq_ext, rhon_eq_ext)
get_interp_val(r::Real, z::Real) = psin2rhon(rz2psin(r, z))
get_interp_val(rz::Tuple{Real, Real}) = get_interp_val(rz...)
return get_interp_val
g = let psin2rhon = psin2rhon, rz2psin = rz2psin
(r, z) -> psin2rhon(rz2psin(r, z))
end
return g
end

"""
Expand Down Expand Up @@ -423,9 +422,10 @@ function interp(
rz2rho::Function,
) where {T <: Real}
itp = interp(prop, prof)
get_interp_val(r::Real, z::Real) = itp.(rz2rho(r, z))
get_interp_val(rz::Tuple{Real, Real}) = get_interp_val(rz...)
return get_interp_val
g = let itp = itp
(r, z) -> itp(rz2rho(r, z))
end
return g
end

"""
Expand Down
20 changes: 10 additions & 10 deletions src/subset_tools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,10 @@ function get_grid_subset_with_index(
return subset
end
end
# BCL 12/8: Creates type instability, but maybe okay since it's a "simple" Union
# subset::Union{Int64, OMAS.edge_profiles__grid_ggd___grid_subset}
#
# Better would be to immediately throw an error or return nothing
return 0 # Indicates failure
end

Expand Down Expand Up @@ -202,7 +206,7 @@ function get_subset_centers(space::OMAS.edge_profiles__grid_ggd___space,
subset_space = get_subset_space(space, subset.element)
grid_nodes = space.objects_per_dimension[1].object
return [
Tuple(mean([grid_nodes[node].geometry for node ∈ obj.nodes])) for
Tuple(mean(SVector{2}(grid_nodes[node].geometry) for node ∈ obj.nodes)) for
obj ∈ subset_space
]
end
Expand All @@ -213,7 +217,7 @@ end
from_subset::OMAS.edge_profiles__grid_ggd___grid_subset,
to_subset::OMAS.edge_profiles__grid_ggd___grid_subset,
space::OMAS.edge_profiles__grid_ggd___space,
)
)

This function can be used to add another instance on a property vector representing the
value in a new subset that can be taken as a projection from an existing larger subset.
Expand Down Expand Up @@ -389,21 +393,17 @@ function Base.:∈(
count = 0
for ele ∈ subset_bnd.element
edge = edges[ele.object[1].index]
r_max = maximum([nodes[node].geometry[1] for node ∈ edge.nodes])
r_min = minimum([nodes[node].geometry[1] for node ∈ edge.nodes])
r_max = maximum(nodes[node].geometry[1] for node ∈ edge.nodes)
r_min = minimum(nodes[node].geometry[1] for node ∈ edge.nodes)
if r_min <= r < r_max
z_max = maximum([nodes[node].geometry[2] for node ∈ edge.nodes])
z_max = maximum(nodes[node].geometry[2] for node ∈ edge.nodes)
if z < z_max
count += 1
end
end
end
# If it is even, the point is outside the boundary
if count % 2 == 1
return true
else
return false
end
return count % 2 == 1
end

function get_prop_with_grid_subset_index(
Expand Down