Skip to content

Nancy-wangxixi/MTCNN-PyTorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MTCNN PyTorch

MTCNN 推理阶段的 PyTorch 实现。支持 GPU(CUDA)计算,兼容 PyTorch 1.4.0。
原作者论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks.

示例效果

使用方式

from mtcnn import FaceDetector
from PIL import Image

# 人脸检测对象。优先使用GPU进行计算(会自动判断GPU是否可用)
# 你也可以通过设置 FaceDetector("cpu") 或者 FaceDetector("cuda") 手动指定计算设备
detector = FaceDetector()

image = Image.open("./images/image.jpg")

# 检测人脸,返回人脸位置坐标
# 其中bboxes是一个n*5的列表、landmarks是一个n*10的列表,n表示检测出来的人脸个数,数据详细情况如下:
# bbox:[左上角x坐标, 左上角y坐标, 右下角x坐标, 右下角y坐标, 检测评分]
# landmark:[右眼x, 左眼x, 鼻子x, 右嘴角x, 左嘴角x, 右眼y, 左眼y, 鼻子y, 右嘴角y, 左嘴角y]
bboxes, landmarks = detector.detect(image)

# 绘制并保存标注图
drawed_image = detector.draw_bboxes(image)
drawed_image.save("./images/drawed_image.jpg")

# 裁剪人脸图片并保存
face_img_list = detector.crop_faces(image, size=64)
for i in range(len(face_img_list)):
    face_img_list[i].save("./images/face_" + str(i + 1) + ".jpg")

将上述代码保存为 demo.py,运行后可以在images文件夹下查看保存的图片。

依赖

  • PyTorch 1.4.0
  • Pillow
  • NumPy

鸣谢

本项目实现离不开以下项目的启发,特此感谢:

About

MTCNN 推理阶段的 PyTorch 实现

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%