This repository contains the experiment code for the paper:
Jurkschat, L., Wiedemann, G., Heinrich, M., Ruckdeschel, M., & Torge, S. (2022). Few-Shot Learning for Argument Aspects of the Nuclear Energy Debate. In Proceedings of the 13th International Conference on Language Resources and Evaluation (LREC 2022). European Language Resources Association (ELRA).
Experiments:
- Evaluation of different pre-trained transformer models to classify the AAC-NE dataset [1]
- Evaluation of two few-shot learning approaches to argument aspect mining
- Application of the best few-shot learner to a newspaper corpus of argumentative sentences from "The Guardian"
[1] Jurkschat, L., Wiedemann, G., Heinrich, M., Ruckdeschel, M., & Torge, S. (2022). Argument Aspect Corpus - Nuclear Energy. https://doi.org/10.5281/zenodo.6470232