UNet++ is a new general purpose image segmentation architecture for more accurate image segmentation. UNet++ consists of U-Nets of varying depths whose decoders are densely connected at the same resolution via the redesigned skip pathways, which aim to address two key challenges of the U-Net: 1) unknown depth of the optimal architecture and 2) the unnecessarily restrictive design of skip connections.
Clone the repository and import the model with:
from model.unetpp import UNetPP
if __name__ == '__main__':
unet = UNetPP()
unet.compile()
unet.summary()
This model was designed for multi-classes classification and therefore uses softmax.
as final activation. In order to fight class imbalance, which is usually the case, the high-order function
model.losses.weighted_loss
can be used to decorate classical loss functions.
Kera's summary of model with 32 convolution filters at the input.
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 512, 512, 51 0
__________________________________________________________________________________________________
conv2d (Conv2D) (None, 512, 512, 32) 147488 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 512, 512, 32) 128 conv2d[0][0]
__________________________________________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization[0][0]
__________________________________________________________________________________________________
dropout (Dropout) (None, 512, 512, 32) 0 leaky_re_lu[0][0]
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 512, 512, 32) 9248 dropout[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 512, 512, 32) 128 conv2d_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 512, 512, 32) 0 leaky_re_lu_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 256, 256, 32) 0 dropout_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 256, 256, 64) 18496 max_pooling2d[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 256, 256, 64) 256 conv2d_2[0][0]
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 256, 256, 64) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 256, 256, 64) 0 leaky_re_lu_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 256, 256, 64) 36928 dropout_2[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 256, 256, 64) 256 conv2d_3[0][0]
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, 256, 256, 64) 0 batch_normalization_3[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 256, 256, 64) 0 leaky_re_lu_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 128, 128, 64) 0 dropout_3[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 128, 128, 128 73856 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 128, 128, 128 512 conv2d_6[0][0]
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU) (None, 128, 128, 128 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
dropout_5 (Dropout) (None, 128, 128, 128 0 leaky_re_lu_6[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 128, 128, 128 147584 dropout_5[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 128, 128, 128 512 conv2d_7[0][0]
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU) (None, 128, 128, 128 0 batch_normalization_7[0][0]
__________________________________________________________________________________________________
dropout_6 (Dropout) (None, 128, 128, 128 0 leaky_re_lu_7[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 64, 64, 128) 0 dropout_6[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 64, 64, 256) 295168 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 64, 64, 256) 1024 conv2d_12[0][0]
__________________________________________________________________________________________________
leaky_re_lu_12 (LeakyReLU) (None, 64, 64, 256) 0 batch_normalization_12[0][0]
__________________________________________________________________________________________________
dropout_9 (Dropout) (None, 64, 64, 256) 0 leaky_re_lu_12[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 64, 64, 256) 590080 dropout_9[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 64, 64, 256) 1024 conv2d_13[0][0]
__________________________________________________________________________________________________
leaky_re_lu_13 (LeakyReLU) (None, 64, 64, 256) 0 batch_normalization_13[0][0]
__________________________________________________________________________________________________
dropout_10 (Dropout) (None, 64, 64, 256) 0 leaky_re_lu_13[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 32, 32, 256) 0 dropout_10[0][0]
__________________________________________________________________________________________________
conv2d_20 (Conv2D) (None, 32, 32, 512) 1180160 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 32, 32, 512) 2048 conv2d_20[0][0]
__________________________________________________________________________________________________
leaky_re_lu_20 (LeakyReLU) (None, 32, 32, 512) 0 batch_normalization_20[0][0]
__________________________________________________________________________________________________
conv2d_21 (Conv2D) (None, 32, 32, 512) 2359808 leaky_re_lu_20[0][0]
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 32, 32, 512) 2048 conv2d_21[0][0]
__________________________________________________________________________________________________
leaky_re_lu_21 (LeakyReLU) (None, 32, 32, 512) 0 batch_normalization_21[0][0]
__________________________________________________________________________________________________
dropout_14 (Dropout) (None, 32, 32, 512) 0 leaky_re_lu_21[0][0]
__________________________________________________________________________________________________
conv2d_transpose_6 (Conv2DTrans (None, 64, 64, 256) 524544 dropout_14[0][0]
__________________________________________________________________________________________________
concatenate_6 (Concatenate) (None, 64, 64, 512) 0 conv2d_transpose_6[0][0]
dropout_10[0][0]
__________________________________________________________________________________________________
conv2d_transpose_3 (Conv2DTrans (None, 128, 128, 32) 32800 dropout_10[0][0]
__________________________________________________________________________________________________
conv2d_22 (Conv2D) (None, 64, 64, 256) 1179904 concatenate_6[0][0]
__________________________________________________________________________________________________
concatenate_3 (Concatenate) (None, 128, 128, 160 0 dropout_6[0][0]
conv2d_transpose_3[0][0]
__________________________________________________________________________________________________
conv2d_transpose_1 (Conv2DTrans (None, 256, 256, 32) 16416 dropout_6[0][0]
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 64, 64, 256) 1024 conv2d_22[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 128, 128, 32) 46112 concatenate_3[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 256, 256, 96) 0 dropout_3[0][0]
conv2d_transpose_1[0][0]
__________________________________________________________________________________________________
conv2d_transpose (Conv2DTranspo (None, 512, 512, 32) 8224 dropout_3[0][0]
__________________________________________________________________________________________________
leaky_re_lu_22 (LeakyReLU) (None, 64, 64, 256) 0 batch_normalization_22[0][0]
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 128, 128, 32) 128 conv2d_14[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 256, 256, 32) 27680 concatenate_1[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 512, 512, 64) 0 dropout_1[0][0]
conv2d_transpose[0][0]
__________________________________________________________________________________________________
conv2d_23 (Conv2D) (None, 64, 64, 256) 590080 leaky_re_lu_22[0][0]
__________________________________________________________________________________________________
leaky_re_lu_14 (LeakyReLU) (None, 128, 128, 32) 0 batch_normalization_14[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 256, 256, 32) 128 conv2d_8[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 512, 512, 32) 18464 concatenate[0][0]
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 64, 64, 256) 1024 conv2d_23[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 128, 128, 32) 9248 leaky_re_lu_14[0][0]
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU) (None, 256, 256, 32) 0 batch_normalization_8[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 512, 512, 32) 128 conv2d_4[0][0]
__________________________________________________________________________________________________
leaky_re_lu_23 (LeakyReLU) (None, 64, 64, 256) 0 batch_normalization_23[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 128, 128, 32) 128 conv2d_15[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 256, 256, 32) 9248 leaky_re_lu_8[0][0]
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
dropout_15 (Dropout) (None, 64, 64, 256) 0 leaky_re_lu_23[0][0]
__________________________________________________________________________________________________
leaky_re_lu_15 (LeakyReLU) (None, 128, 128, 32) 0 batch_normalization_15[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 256, 256, 32) 128 conv2d_9[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 512, 512, 32) 9248 leaky_re_lu_4[0][0]
__________________________________________________________________________________________________
conv2d_transpose_7 (Conv2DTrans (None, 128, 128, 128 131200 dropout_15[0][0]
__________________________________________________________________________________________________
dropout_11 (Dropout) (None, 128, 128, 32) 0 leaky_re_lu_15[0][0]
__________________________________________________________________________________________________
leaky_re_lu_9 (LeakyReLU) (None, 256, 256, 32) 0 batch_normalization_9[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 512, 512, 32) 128 conv2d_5[0][0]
__________________________________________________________________________________________________
concatenate_7 (Concatenate) (None, 128, 128, 288 0 conv2d_transpose_7[0][0]
dropout_6[0][0]
dropout_11[0][0]
__________________________________________________________________________________________________
dropout_7 (Dropout) (None, 256, 256, 32) 0 leaky_re_lu_9[0][0]
__________________________________________________________________________________________________
conv2d_transpose_4 (Conv2DTrans (None, 256, 256, 32) 4128 dropout_11[0][0]
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_5[0][0]
__________________________________________________________________________________________________
conv2d_24 (Conv2D) (None, 128, 128, 128 331904 concatenate_7[0][0]
__________________________________________________________________________________________________
concatenate_4 (Concatenate) (None, 256, 256, 128 0 dropout_3[0][0]
dropout_7[0][0]
conv2d_transpose_4[0][0]
__________________________________________________________________________________________________
dropout_4 (Dropout) (None, 512, 512, 32) 0 leaky_re_lu_5[0][0]
__________________________________________________________________________________________________
conv2d_transpose_2 (Conv2DTrans (None, 512, 512, 32) 4128 dropout_7[0][0]
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 128, 128, 128 512 conv2d_24[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 256, 256, 32) 36896 concatenate_4[0][0]
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (None, 512, 512, 96) 0 dropout_1[0][0]
dropout_4[0][0]
conv2d_transpose_2[0][0]
__________________________________________________________________________________________________
leaky_re_lu_24 (LeakyReLU) (None, 128, 128, 128 0 batch_normalization_24[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 256, 256, 32) 128 conv2d_16[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 512, 512, 32) 27680 concatenate_2[0][0]
__________________________________________________________________________________________________
conv2d_25 (Conv2D) (None, 128, 128, 128 147584 leaky_re_lu_24[0][0]
__________________________________________________________________________________________________
leaky_re_lu_16 (LeakyReLU) (None, 256, 256, 32) 0 batch_normalization_16[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 512, 512, 32) 128 conv2d_10[0][0]
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 128, 128, 128 512 conv2d_25[0][0]
__________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, 256, 256, 32) 9248 leaky_re_lu_16[0][0]
__________________________________________________________________________________________________
leaky_re_lu_10 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_10[0][0]
__________________________________________________________________________________________________
leaky_re_lu_25 (LeakyReLU) (None, 128, 128, 128 0 batch_normalization_25[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 256, 256, 32) 128 conv2d_17[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 512, 512, 32) 9248 leaky_re_lu_10[0][0]
__________________________________________________________________________________________________
dropout_16 (Dropout) (None, 128, 128, 128 0 leaky_re_lu_25[0][0]
__________________________________________________________________________________________________
leaky_re_lu_17 (LeakyReLU) (None, 256, 256, 32) 0 batch_normalization_17[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 512, 512, 32) 128 conv2d_11[0][0]
__________________________________________________________________________________________________
conv2d_transpose_8 (Conv2DTrans (None, 256, 256, 64) 32832 dropout_16[0][0]
__________________________________________________________________________________________________
dropout_12 (Dropout) (None, 256, 256, 32) 0 leaky_re_lu_17[0][0]
__________________________________________________________________________________________________
leaky_re_lu_11 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_11[0][0]
__________________________________________________________________________________________________
concatenate_8 (Concatenate) (None, 256, 256, 192 0 conv2d_transpose_8[0][0]
dropout_3[0][0]
dropout_7[0][0]
dropout_12[0][0]
__________________________________________________________________________________________________
dropout_8 (Dropout) (None, 512, 512, 32) 0 leaky_re_lu_11[0][0]
__________________________________________________________________________________________________
conv2d_transpose_5 (Conv2DTrans (None, 512, 512, 32) 4128 dropout_12[0][0]
__________________________________________________________________________________________________
conv2d_26 (Conv2D) (None, 256, 256, 64) 110656 concatenate_8[0][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 512, 512, 128 0 dropout_1[0][0]
dropout_4[0][0]
dropout_8[0][0]
conv2d_transpose_5[0][0]
__________________________________________________________________________________________________
batch_normalization_26 (BatchNo (None, 256, 256, 64) 256 conv2d_26[0][0]
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 512, 512, 32) 36896 concatenate_5[0][0]
__________________________________________________________________________________________________
leaky_re_lu_26 (LeakyReLU) (None, 256, 256, 64) 0 batch_normalization_26[0][0]
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 512, 512, 32) 128 conv2d_18[0][0]
__________________________________________________________________________________________________
conv2d_27 (Conv2D) (None, 256, 256, 64) 36928 leaky_re_lu_26[0][0]
__________________________________________________________________________________________________
leaky_re_lu_18 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_18[0][0]
__________________________________________________________________________________________________
batch_normalization_27 (BatchNo (None, 256, 256, 64) 256 conv2d_27[0][0]
__________________________________________________________________________________________________
conv2d_19 (Conv2D) (None, 512, 512, 32) 9248 leaky_re_lu_18[0][0]
__________________________________________________________________________________________________
leaky_re_lu_27 (LeakyReLU) (None, 256, 256, 64) 0 batch_normalization_27[0][0]
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 512, 512, 32) 128 conv2d_19[0][0]
__________________________________________________________________________________________________
dropout_17 (Dropout) (None, 256, 256, 64) 0 leaky_re_lu_27[0][0]
__________________________________________________________________________________________________
leaky_re_lu_19 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_19[0][0]
__________________________________________________________________________________________________
conv2d_transpose_9 (Conv2DTrans (None, 512, 512, 32) 8224 dropout_17[0][0]
__________________________________________________________________________________________________
dropout_13 (Dropout) (None, 512, 512, 32) 0 leaky_re_lu_19[0][0]
__________________________________________________________________________________________________
concatenate_9 (Concatenate) (None, 512, 512, 160 0 conv2d_transpose_9[0][0]
dropout_1[0][0]
dropout_4[0][0]
dropout_8[0][0]
dropout_13[0][0]
__________________________________________________________________________________________________
conv2d_28 (Conv2D) (None, 512, 512, 32) 46112 concatenate_9[0][0]
__________________________________________________________________________________________________
batch_normalization_28 (BatchNo (None, 512, 512, 32) 128 conv2d_28[0][0]
__________________________________________________________________________________________________
leaky_re_lu_28 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_28[0][0]
__________________________________________________________________________________________________
conv2d_29 (Conv2D) (None, 512, 512, 32) 9248 leaky_re_lu_28[0][0]
__________________________________________________________________________________________________
batch_normalization_29 (BatchNo (None, 512, 512, 32) 128 conv2d_29[0][0]
__________________________________________________________________________________________________
leaky_re_lu_29 (LeakyReLU) (None, 512, 512, 32) 0 batch_normalization_29[0][0]
__________________________________________________________________________________________________
dropout_18 (Dropout) (None, 512, 512, 32) 0 leaky_re_lu_29[0][0]
__________________________________________________________________________________________________
conv2d_30 (Conv2D) (None, 512, 512, 3) 99 dropout_18[0][0]
==================================================================================================
Total params: 8,340,483
Trainable params: 8,333,827
Non-trainable params: 6,656