Skip to content

A Benchmark Dataset and Baseline method for Satellite Video Multi-label Scene Classification

License

Notifications You must be signed in to change notification settings

Kingdroper/STFCE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

 
SAT-MTB-MLSC website HOT      MLSC Baseline and Benchmark TRY IT OUT
 

Introduction

This is the official implementation of our paper "Satellite Video Multi-Label Scene Classification With Spatial and Temporal Feature Cooperative Encoding: A Benchmark Dataset and Method".

This is the first publicly available and large-scale satellite video multi-label scene classification dataset.
It consists of 18 classes of static and dynamic ground contents, 3549 videos, and 141960 frames. We also propose a baseline method STFCE. Our Dataset: dataset

Our STFCE: As shown in the fig

We hope that this work provides a new research topic for researchers to promote the applications of satellite video.

Train and val dataset:DATASET.zip

Train and val frame features extracted by Inception network: Train and Val frame features.zip

STFCE models: best model

Installation

All our experiments were done on 4 Tesla V100 GPUs. We imported our conda and pip environment configurations into two files:conda_env.yml and requirements.txt.

  • Use the following code to reproduce the environment and make sure your GPUs are available:
conda env create -f conda_env.yml
pip install -r requirements.txt
  • Download the dataset, train-val frame features, and our pretrained models using above link. Then put them in the code root directory. We use the extracted frame features to train and test our model. Test our model:
python eval.py --eval_data_pattern="val.tfrecord" --model=LstmModel --train_dir=stfce_model --frame_features=True --feature_names="rgb" --feature_sizes="1024" --batch_size=1024 --base_learning_rate=0.0002 --lstm_random_sequence=True --run_once=True --top_k=18 --num_classes=18
  • Train our model:
python train.py --train_data_pattern=train.tfrecord --model=LstmModel --train_dir=stfce_model --frame_features=True --feature_names="rgb" --feature_sizes="1024" --batch_size=80 --base_learning_rate=0.0002 --lstm_random_sequence=True --max_step=1000 --num_classes=18 --export_model_steps=100 --num_epochs=36

Citation

If you find this project useful in your research, please consider cite:

@ARTICLE{10471306,
  author={Guo, Weilong and Li, Shengyang and Chen, Feixiang and Sun, Yuhan and Gu, Yanfeng},
  journal={IEEE Transactions on Image Processing}, 
  title={Satellite Video Multi-Label Scene Classification With Spatial and Temporal Feature Cooperative Encoding: A Benchmark Dataset and Method}, 
  year={2024},
  volume={33},
  pages={2238-2251},
  doi={10.1109/TIP.2024.3374100}}

About

A Benchmark Dataset and Baseline method for Satellite Video Multi-label Scene Classification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published