This repository contains the deep learning regression and classification models for all robots used in the JdeRobot community.
├── Carla-FollowLane
| |
| |── pytorch
| |
| |── tensorflow
| |
├── Carla-FollowLaneTraffic
| |
| |── pytorch
| |
├── Formula1-FollowLine
| |
| |── pytorch
| | |── PilotNet # Pilot Net pytorch implementation
| | | ├── scripts # scripts for running experiments
| | | ├── utils
| | | | ├── pilot_net_dataset.py # Torchvision custom dataset
| | | | ├── pilotnet.py # CNN for PilotNet
| | | | ├── transform_helpers.py # Data Augmentation
| | | | └── processing.py # Data collecting, processing and utilities
| | | └── train.py # training code
| | |
| | └── PilotNetStacked # Pilot Net Stacked Image implementation
| | ├── scripts # scripts for running experiments
| | ├── utils
| | | ├── pilot_net_dataset.py # Sequentially stacked image dataset
| | | ├── pilotnet.py # Modified Hyperparams
| | | ├── transform_helpers.py # Data Augmentation
| | | └── processing.py # Data collecting, processing and utilities
| | └── train.py # training code
| |
| ├── tensoflow
| |── PilotNet # Pilot Net tensorflow implementation
| ├── utils
| | ├── dataset.py # Custom dataset
| | ├── pilotnet.py # CNN for PilotNet
| | └── processing.py # Data collecting, processing and utilities
| └── train.py # training code
├── Drone-FollowLine
|
|── DeepPilot # DeepPilot CNN pytorch implementation
| ├── scripts # scripts for running experiments
| ├── utils
| | ├── pilot_net_dataset.py # Torchvision custom dataset
| | ├── pilotnet.py # CNN for DeepPilot
| | ├── transform_helpers.py # Data Augmentation
| | └── processing.py # Data collecting, processing and utilities
| └── train.py # training code
First, install Python 3.10
sudo apt install software-properties-common -y
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt install python3.10
sudo apt install python3.10-venv
sudo apt install python3.10-dev
sudo apt install python3.10-minimal
sudo apt install python3.10-distutils
Next, it is best to setup a virtual environment with python 3.10
cd ~ && mkdir pyenvs && cd pyenvs
python3.10 -m venv dlstudio
source ~/pyenvs/dlstudio/bin/activate
python3 -m pip install -U pip
cd ~
git clone https://github.com/JdeRobot/DeepLearningStudio DeepLearningStudio
cd DeepLearningStudio
pip install -r requirements.txt
- Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel et al. "End to end learning for self-driving cars." arXiv preprint arXiv:1604.07316 (2016). https://arxiv.org/abs/1604.07316
@article{bojarski2016end,
title={End to end learning for self-driving cars},
author={Bojarski, Mariusz and Del Testa, Davide and Dworakowski, Daniel and Firner, Bernhard and Flepp, Beat and Goyal, Prasoon and Jackel, Lawrence D and Monfort, Mathew and Muller, Urs and Zhang, Jiakai and others},
journal={arXiv preprint arXiv:1604.07316},
year={2016}
}
@article{bojarski2017explaining,
title={Explaining how a deep neural network trained with end-to-end learning steers a car},
author={Bojarski, Mariusz and Yeres, Philip and Choromanska, Anna and Choromanski, Krzysztof and Firner, Bernhard and Jackel, Lawrence and Muller, Urs},
journal={arXiv preprint arXiv:1704.07911},
year={2017}
}
- Rojas-Perez, L.O., & Martinez-Carranza, J. (2020). DeepPilot: A CNN for Autonomous Drone Racing. Sensors, 20(16), 4524. https://doi.org/10.3390/s20164524
@article{rojas2020deeppilot,
title={DeepPilot: A CNN for Autonomous Drone Racing},
author={Rojas-Perez, Leticia Oyuki and Martinez-Carranza, Jose},
journal={Sensors},
volume={20},
number={16},
pages={4524},
year={2020},
publisher={Multidisciplinary Digital Publishing Institute}
}
- Paniego, Sergio and Paliwal, Nikhil and Cañas, JoséMaría (2023). DeepPilot: Model Optimization in Deep Learning Based Robot Control for Autonomous Driving. https://doi.org/10.1109/LRA.2023.3336244
@article{Paniego2023,
author={Paniego, Sergio and Paliwal, Nikhil and Cañas, JoséMaría},
journal={IEEE Robotics and Automation Letters},
title={Model Optimization in Deep Learning Based Robot Control for Autonomous Driving},
year={2024},
volume={9},
number={1},
pages={715-722},
doi={10.1109/LRA.2023.3336244}
}