Skip to content

A tensorflow implementation of the network in "Bosse S, Maniry D, Müller K R, et al. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[J]. arXiv preprint arXiv:1612.01697, 2016."

Notifications You must be signed in to change notification settings

HC-2016/weighted_DCNN_IQA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

weighted DCNN

Introduction

This is a tensorflow implementation of the network in "Bosse S, Maniry D, Müller K R, et al. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[J]. arXiv preprint arXiv:1612.01697, 2016." . We only reproduce the weighted FR network here. Refer to dmaniry/deepIQA for official source codes.

Dependencies

For the code in src

  • Python 3.5
  • TensorFlow 1.0
  • Anaconda3
  • Windows 10

For the code in src_tid2013_cluster

  • Python 2.7
  • TensorFlow 1.0
  • CentOS 6.5

Results

We repeat 20 times on tid2013.

enter image description here

Note:

  • the reference images and the epoch are indexed from 0.
  • the metric includes MAE/SROCC/KROCC/PLCC/RMSE.

TODO

  • complement the experiments on tid2013.

About

A tensorflow implementation of the network in "Bosse S, Maniry D, Müller K R, et al. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[J]. arXiv preprint arXiv:1612.01697, 2016."

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages