Skip to content

EPinzuti/IDTxl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IDTxl

The Information Dynamics Toolkit xl (IDTxl) in Python. IDTxl is a comprehensive software package for the efficient analysis of information dynamics of large data sets.

IDTxl provides estimators for the following information theoretic measures:

  • mutual information (MI)
  • bivariate transfer entropy (bTE)
  • multivariate transfer entropy (mTE)
  • Granger causality (GC)
  • active information storage (AIS)
  • partial information decomposition (PID)

IDTxl uses GPU-accelerated estimators as well as parallel processing and is designed for the application on high-performance-computing clusters.

To get started have a look at the wiki and the documentation.

Contributors

  • Patricia Wollstadt, Brain Imaging Center, MEG Unit, Goethe-University, Frankfurt, Germany
  • Michael Wibral, Brain Imaging Center, MEG Unit, Goethe-University, Frankfurt, Germany
  • Joseph T. Lizier, Complex Systems Research Group, The University of Sydney, Sydney, Australia
  • Raul Vicente, Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
  • Connor Finn, Complex Systems Research Group, The University of Sydney, Sydney, Australia
  • Mario Martínez Zarzuela, Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Valladolid, Spain
  • Michael Lindner, Center for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, UK

References

  • Multivariate transfer entropy: Lizier & Rubinov, 2012, Preprint, Technical Report 25/2012, Max Planck Institute for Mathematics in the Sciences. Available from: http://www.mis.mpg.de/preprints/2012/preprint2012_25.pdf
  • Kraskov estimator: Kraskov et al., 2004, Phys Rev E 69, 066138
  • Nonuniform embedding: Faes et al., 2011, Phys Rev E 83, 051112
  • Faes' compensated transfer entropy: Faes et al., 2013, Entropy 15, 198-219
  • Uniform embedding: Takens, 1981, Detecting strange attractors in turbulence (pp. 366-381). Springer Berlin Heidelberg
  • Ragwitz' criterion: Ragwitz & Kantz, 2002, Phys Rev E 65, 056201

Releases

No releases published

Packages

No packages published

Languages

  • Python 55.8%
  • Jupyter Notebook 38.5%
  • Cuda 3.1%
  • C 1.1%
  • TeX 0.7%
  • MATLAB 0.7%
  • Other 0.1%