Based on react-graph-vis
pip install streamlit-agraph
Check out the example App!
import streamlit
from streamlit_agraph import agraph, Node, Edge, Config
nodes = []
edges = []
nodes.append( Node(id="Spiderman",
label="Peter Parker",
size=25,
shape="circularImage",
image="http://marvel-force-chart.surge.sh/marvel_force_chart_img/top_spiderman.png")
) # includes **kwargs
nodes.append( Node(id="Captain_Marvel",
size=25,
shape="circularImage",
image="http://marvel-force-chart.surge.sh/marvel_force_chart_img/top_captainmarvel.png")
)
edges.append( Edge(source="Captain_Marvel",
label="friend_of",
target="Spiderman",
# **kwargs
)
)
config = Config(width=750,
height=950,
directed=True,
physics=True,
hierarchical=False,
# **kwargs
)
return_value = agraph(nodes=nodes,
edges=edges,
config=config)
from streamlit_agraph.config import Config, ConfigBuilder
# 1. Build the config (with sidebar to play with options) .
config_builder = ConfigBuilder(nodes)
config = config_builder.build()
# 2. If your done, save the config to a file.
config.save("config.json")
# 3. Simple reload from json file (you can bump the builder at this point.)
config = Config(from_json="config.json")
Formating the graph with hierachies is also possible via Hierarchical Option
(see config):
Group as you can see on the node colors too. Just pass the group
attribute to the Node
object.
You may also want to use the TripleStore (untested & incomplete - yet):
HINT: Make sure to add only unique nodes and edges.
# Currently not workin since update to agraph 2.0 - work in progress
from rdflib import Graph
from streamlit_agraph import TripleStore, agraph
graph = Graph()
graph.parse("http://www.w3.org/People/Berners-Lee/card")
store = TripleStore()
for subj, pred, obj in graph:
store.add_triple(subj, pred, obj, "")
agraph(list(store.getNodes()), list(store.getEdges()), config)
Also graph algos can dirctly supported via the networkx API (untested & incomplete - yet):
from streamlit_agraph import GraphAlgos
algos = GraphAlgos(store)
algos.shortest_path("Spiderman", "Captain_Marvel")
algos.density()