Skip to content

A script to generate a runtime environment tarball from an ActiveState project

Notifications You must be signed in to change notification settings

ActiveState/aws-emr-spark-env

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

This repository provides a script that checks out an ActiveState project and copies the artifacts in a specific runtime directory.

The runtime directory is /home/hadoop/environment/runtime which is a place where the runtime will be un-packed on the EMR images later. (Refer to [1] to see how this should look like without the State Tool)

As the runtime will be executed by potentially hundreds of hosts in parallel and thousands of time on each host, we do not want to use executors! Instead we want to use the binaries directly which is an undocumented use case.

The writes a tarball with the artifacts in the /output directory. The Path to the python executable can then be set as:

/home/hadoop/environment/usr/bin/python

How to use this script inside your project:

Create a directory bin in your project workspace and copy the script file in it:

mkdir -p bin
curl https://raw.githubusercontent.com/ActiveState/aws-emr-spark-env/main/bin/create_spark_state_env.sh -O bin/create_spark_state_env.sh

Now you can create a spark_env.tar.gz file:

PROJECT=myorg/myproject

state auth
ACTIVESTATE_API_KEY=$(state export new-api-key state_env_key)
docker run -it -v $PWD/bin:/output --entrypoint=/bin/bash amazonlinux:2 /output /create_spark_state_env.sh $ACTIVESTATE_API_KEY $PROJECT

upload it to S3

export S3_UPLOAD_PREFIX=s3://your-bucket/your-prefix

# bundle up your own source code (optional)
git archive --format=zip HEAD:src > project_archive.zip

s3_upload() {
    S3_PATH=$1; shift
    FILE=$1; shift

    BASE_NAME=`basename $FILE`
    S3_URL=$S3_PATH/$BASE_NAME
    aws --profile sso s3 ls $S3_URL && return

    echo "Uploading $FILE to $S3_URL ..."
    aws --profile sso s3 cp $FILE $S3_URL
}

# upload to the s3
s3_upload $S3_UPLOAD_PREFIX bin/state_env.tar.gz
s3_upload $S3_UPLOAD_PREFIX project_archive.zip 
s3_upload $S3_UPLOAD_PREFIX migration-script.py

and finally schedule the job like this:

export APP_ID='...'

export EXECUTION_ROLE='...'
export EXECUTION_ROLE_ARN=$(aws iam get-role --role-name $EXECUTION_ROLE | jq -r .Role.Arn )

JOB_DRIVER=$(jq -n \
     --arg cs "$CORES" \
     --arg mem "$MEMORY" \
     --arg execs "$MAX_EXECUTORS" \
     --arg migration_file "$S3_UPLOAD_PATH/migration-script.py" \
     --arg state_env_file "$S3_UPLOAD_PATH/state_env.tar.gz" \
     --arg project_archive_file "$S3_PATH/project_archive.zip" \
     --arg python_path "./environment/usr/bin/python" \
     --argjson args "[$LIMIT_ARGS\"--output_suffix=$SUFFIX\", \"$SOURCE\"]" \
     '{
        sparkSubmit: {
          entryPoint: $migration_file,
          entryPointArguments: $args,
          sparkSubmitParameters: (
            "--conf spark.executor.cores="+$cs+
            " --conf spark.executor.memory="+$mem+
            " --conf spark.driver.cores="+$cs+
            " --conf spark.driver.memory="+$mem+
            " --conf spark.archives="+$state_env_file+"#environment,"+
            " --conf spark.emr-serverless.driverEnv.PYSPARK_DRIVER_PYTHON="+$python_path+
            " --conf spark.emr-serverless.driverEnv.PYSPARK_PYTHON="+$python_path+
            " --conf spark.executorEnv.PYSPARK_PYTHON="+$python_path+ 
            " --conf spark.submit.pyFiles="+$project_archive+
            " --conf spark.dynamicAllocation.maxExecutors="+$execs+
            " --conf spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"
            )
        }
      }')

CONFIG_OVERRIDES=$(jq -n \
    --arg log_uri "$S3_PATH/logs" \
    '{
        monitoringConfiguration: {
            s3MonitoringConfiguration: {
                logUri: $log_uri
            }
        }
    }'
)

JOB_ID=$(aws emr-serverless start-job-run --application-id $APP_ID \
   --execution-role-arn $EXECUTION_ROLE_ARN \
   --name $APP_NAME \
   --job-driver "$JOB_DRIVER" \
   --configuration-overrides "$CONFIG_OVERRIDES" | jq -r .jobRunId )

echo $JOB_ID

watch "aws emr-serverless get-job-run --application-id $APP_ID --job-run-id $JOB_ID | jq '.jobRun | {state: .state, details: .stateDetails}'"

About

A script to generate a runtime environment tarball from an ActiveState project

Resources

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages