forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
173 lines (149 loc) · 6.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train the model."""
# Example usage:
#
# python train.py \
# --logtostderr \
# --data_dir ~/vid2depth/data/kitti_raw_eigen \
# --seq_length 3 \
# --reconstr_weight 0.85 \
# --smooth_weight 0.05 \
# --ssim_weight 0.15 \
# --icp_weight 0.1 \
# --checkpoint_dir ~/vid2depth/checkpoints
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import time
from absl import app
from absl import flags
from absl import logging
import model
import numpy as np
import tensorflow as tf
import util
gfile = tf.gfile
HOME_DIR = os.path.expanduser('~')
DEFAULT_DATA_DIR = os.path.join(HOME_DIR, 'vid2depth/data/kitti_raw_eigen')
DEFAULT_CHECKPOINT_DIR = os.path.join(HOME_DIR, 'vid2depth/checkpoints')
flags.DEFINE_string('data_dir', DEFAULT_DATA_DIR, 'Preprocessed data.')
flags.DEFINE_float('learning_rate', 0.0002, 'Adam learning rate.')
flags.DEFINE_float('beta1', 0.9, 'Adam momentum.')
flags.DEFINE_float('reconstr_weight', 0.85, 'Frame reconstruction loss weight.')
flags.DEFINE_float('smooth_weight', 0.05, 'Smoothness loss weight.')
flags.DEFINE_float('ssim_weight', 0.15, 'SSIM loss weight.')
flags.DEFINE_float('icp_weight', 0.0, 'ICP loss weight.')
flags.DEFINE_integer('batch_size', 4, 'The size of a sample batch')
flags.DEFINE_integer('img_height', 128, 'Input frame height.')
flags.DEFINE_integer('img_width', 416, 'Input frame width.')
# Note: Training time grows linearly with sequence length. Use 2 or 3.
flags.DEFINE_integer('seq_length', 3, 'Number of frames in sequence.')
flags.DEFINE_string('pretrained_ckpt', None, 'Path to checkpoint with '
'pretrained weights. Do not include .data* extension.')
flags.DEFINE_string('checkpoint_dir', DEFAULT_CHECKPOINT_DIR,
'Directory to save model checkpoints.')
flags.DEFINE_integer('train_steps', 200000, 'Number of training steps.')
flags.DEFINE_integer('summary_freq', 100, 'Save summaries every N steps.')
flags.DEFINE_bool('legacy_mode', False, 'Whether to limit losses to using only '
'the middle frame in sequence as the target frame.')
FLAGS = flags.FLAGS
# Maximum number of checkpoints to keep.
MAX_TO_KEEP = 100
def main(_):
# Fixed seed for repeatability
seed = 8964
tf.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
if FLAGS.legacy_mode and FLAGS.seq_length < 3:
raise ValueError('Legacy mode supports sequence length > 2 only.')
if not gfile.Exists(FLAGS.checkpoint_dir):
gfile.MakeDirs(FLAGS.checkpoint_dir)
train_model = model.Model(data_dir=FLAGS.data_dir,
is_training=True,
learning_rate=FLAGS.learning_rate,
beta1=FLAGS.beta1,
reconstr_weight=FLAGS.reconstr_weight,
smooth_weight=FLAGS.smooth_weight,
ssim_weight=FLAGS.ssim_weight,
icp_weight=FLAGS.icp_weight,
batch_size=FLAGS.batch_size,
img_height=FLAGS.img_height,
img_width=FLAGS.img_width,
seq_length=FLAGS.seq_length,
legacy_mode=FLAGS.legacy_mode)
train(train_model, FLAGS.pretrained_ckpt, FLAGS.checkpoint_dir,
FLAGS.train_steps, FLAGS.summary_freq)
def train(train_model, pretrained_ckpt, checkpoint_dir, train_steps,
summary_freq):
"""Train model."""
if pretrained_ckpt is not None:
vars_to_restore = util.get_vars_to_restore(pretrained_ckpt)
pretrain_restorer = tf.train.Saver(vars_to_restore)
vars_to_save = util.get_vars_to_restore()
saver = tf.train.Saver(vars_to_save + [train_model.global_step],
max_to_keep=MAX_TO_KEEP)
sv = tf.train.Supervisor(logdir=checkpoint_dir, save_summaries_secs=0,
saver=None)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with sv.managed_session(config=config) as sess:
if pretrained_ckpt is not None:
logging.info('Restoring pretrained weights from %s', pretrained_ckpt)
pretrain_restorer.restore(sess, pretrained_ckpt)
logging.info('Attempting to resume training from %s...', checkpoint_dir)
checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
logging.info('Last checkpoint found: %s', checkpoint)
if checkpoint:
saver.restore(sess, checkpoint)
logging.info('Training...')
start_time = time.time()
last_summary_time = time.time()
steps_per_epoch = train_model.reader.steps_per_epoch
step = 1
while step <= train_steps:
fetches = {
'train': train_model.train_op,
'global_step': train_model.global_step,
'incr_global_step': train_model.incr_global_step
}
if step % summary_freq == 0:
fetches['loss'] = train_model.total_loss
fetches['summary'] = sv.summary_op
results = sess.run(fetches)
global_step = results['global_step']
if step % summary_freq == 0:
sv.summary_writer.add_summary(results['summary'], global_step)
train_epoch = math.ceil(global_step / steps_per_epoch)
train_step = global_step - (train_epoch - 1) * steps_per_epoch
this_cycle = time.time() - last_summary_time
last_summary_time += this_cycle
logging.info(
'Epoch: [%2d] [%5d/%5d] time: %4.2fs (%ds total) loss: %.3f',
train_epoch, train_step, steps_per_epoch, this_cycle,
time.time() - start_time, results['loss'])
if step % steps_per_epoch == 0:
logging.info('[*] Saving checkpoint to %s...', checkpoint_dir)
saver.save(sess, os.path.join(checkpoint_dir, 'model'),
global_step=global_step)
# Setting step to global_step allows for training for a total of
# train_steps even if the program is restarted during training.
step = global_step + 1
if __name__ == '__main__':
app.run(main)