forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
project.py
305 lines (253 loc) · 11.2 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Geometry utilities for projecting frames based on depth and motion.
Modified from Spatial Transformer Networks:
https://github.com/tensorflow/models/blob/master/transformer/spatial_transformer.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
import numpy as np
import tensorflow as tf
def inverse_warp(img, depth, egomotion, intrinsic_mat, intrinsic_mat_inv):
"""Inverse warp a source image to the target image plane.
Args:
img: The source image (to sample pixels from) -- [B, H, W, 3].
depth: Depth map of the target image -- [B, H, W].
egomotion: 6DoF egomotion vector from target to source -- [B, 6].
intrinsic_mat: Camera intrinsic matrix -- [B, 3, 3].
intrinsic_mat_inv: Inverse of the intrinsic matrix -- [B, 3, 3].
Returns:
Projected source image
"""
dims = tf.shape(img)
batch_size, img_height, img_width = dims[0], dims[1], dims[2]
depth = tf.reshape(depth, [batch_size, 1, img_height * img_width])
grid = _meshgrid_abs(img_height, img_width)
grid = tf.tile(tf.expand_dims(grid, 0), [batch_size, 1, 1])
cam_coords = _pixel2cam(depth, grid, intrinsic_mat_inv)
ones = tf.ones([batch_size, 1, img_height * img_width])
cam_coords_hom = tf.concat([cam_coords, ones], axis=1)
egomotion_mat = _egomotion_vec2mat(egomotion, batch_size)
# Get projection matrix for target camera frame to source pixel frame
hom_filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4])
hom_filler = tf.tile(hom_filler, [batch_size, 1, 1])
intrinsic_mat_hom = tf.concat(
[intrinsic_mat, tf.zeros([batch_size, 3, 1])], axis=2)
intrinsic_mat_hom = tf.concat([intrinsic_mat_hom, hom_filler], axis=1)
proj_target_cam_to_source_pixel = tf.matmul(intrinsic_mat_hom, egomotion_mat)
source_pixel_coords = _cam2pixel(cam_coords_hom,
proj_target_cam_to_source_pixel)
source_pixel_coords = tf.reshape(source_pixel_coords,
[batch_size, 2, img_height, img_width])
source_pixel_coords = tf.transpose(source_pixel_coords, perm=[0, 2, 3, 1])
projected_img, mask = _spatial_transformer(img, source_pixel_coords)
return projected_img, mask
def _pixel2cam(depth, pixel_coords, intrinsic_mat_inv):
"""Transform coordinates in the pixel frame to the camera frame."""
cam_coords = tf.matmul(intrinsic_mat_inv, pixel_coords) * depth
return cam_coords
def _cam2pixel(cam_coords, proj_c2p):
"""Transform coordinates in the camera frame to the pixel frame."""
pcoords = tf.matmul(proj_c2p, cam_coords)
x = tf.slice(pcoords, [0, 0, 0], [-1, 1, -1])
y = tf.slice(pcoords, [0, 1, 0], [-1, 1, -1])
z = tf.slice(pcoords, [0, 2, 0], [-1, 1, -1])
# Not tested if adding a small number is necessary
x_norm = x / (z + 1e-10)
y_norm = y / (z + 1e-10)
pixel_coords = tf.concat([x_norm, y_norm], axis=1)
return pixel_coords
def _meshgrid_abs(height, width):
"""Meshgrid in the absolute coordinates."""
x_t = tf.matmul(
tf.ones(shape=tf.stack([height, 1])),
tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
y_t = tf.matmul(
tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
tf.ones(shape=tf.stack([1, width])))
x_t = (x_t + 1.0) * 0.5 * tf.cast(width - 1, tf.float32)
y_t = (y_t + 1.0) * 0.5 * tf.cast(height - 1, tf.float32)
x_t_flat = tf.reshape(x_t, (1, -1))
y_t_flat = tf.reshape(y_t, (1, -1))
ones = tf.ones_like(x_t_flat)
grid = tf.concat([x_t_flat, y_t_flat, ones], axis=0)
return grid
def _euler2mat(z, y, x):
"""Converts euler angles to rotation matrix.
From:
https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174
TODO: Remove the dimension for 'N' (deprecated for converting all source
poses altogether).
Args:
z: rotation angle along z axis (in radians) -- size = [B, n]
y: rotation angle along y axis (in radians) -- size = [B, n]
x: rotation angle along x axis (in radians) -- size = [B, n]
Returns:
Rotation matrix corresponding to the euler angles, with shape [B, n, 3, 3].
"""
batch_size = tf.shape(z)[0]
n = 1
z = tf.clip_by_value(z, -np.pi, np.pi)
y = tf.clip_by_value(y, -np.pi, np.pi)
x = tf.clip_by_value(x, -np.pi, np.pi)
# Expand to B x N x 1 x 1
z = tf.expand_dims(tf.expand_dims(z, -1), -1)
y = tf.expand_dims(tf.expand_dims(y, -1), -1)
x = tf.expand_dims(tf.expand_dims(x, -1), -1)
zeros = tf.zeros([batch_size, n, 1, 1])
ones = tf.ones([batch_size, n, 1, 1])
cosz = tf.cos(z)
sinz = tf.sin(z)
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=3)
rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
rotz_3 = tf.concat([zeros, zeros, ones], axis=3)
zmat = tf.concat([rotz_1, rotz_2, rotz_3], axis=2)
cosy = tf.cos(y)
siny = tf.sin(y)
roty_1 = tf.concat([cosy, zeros, siny], axis=3)
roty_2 = tf.concat([zeros, ones, zeros], axis=3)
roty_3 = tf.concat([-siny, zeros, cosy], axis=3)
ymat = tf.concat([roty_1, roty_2, roty_3], axis=2)
cosx = tf.cos(x)
sinx = tf.sin(x)
rotx_1 = tf.concat([ones, zeros, zeros], axis=3)
rotx_2 = tf.concat([zeros, cosx, -sinx], axis=3)
rotx_3 = tf.concat([zeros, sinx, cosx], axis=3)
xmat = tf.concat([rotx_1, rotx_2, rotx_3], axis=2)
return tf.matmul(tf.matmul(xmat, ymat), zmat)
def _egomotion_vec2mat(vec, batch_size):
"""Converts 6DoF transform vector to transformation matrix.
Args:
vec: 6DoF parameters [tx, ty, tz, rx, ry, rz] -- [B, 6].
batch_size: Batch size.
Returns:
A transformation matrix -- [B, 4, 4].
"""
translation = tf.slice(vec, [0, 0], [-1, 3])
translation = tf.expand_dims(translation, -1)
rx = tf.slice(vec, [0, 3], [-1, 1])
ry = tf.slice(vec, [0, 4], [-1, 1])
rz = tf.slice(vec, [0, 5], [-1, 1])
rot_mat = _euler2mat(rz, ry, rx)
rot_mat = tf.squeeze(rot_mat, squeeze_dims=[1])
filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4])
filler = tf.tile(filler, [batch_size, 1, 1])
transform_mat = tf.concat([rot_mat, translation], axis=2)
transform_mat = tf.concat([transform_mat, filler], axis=1)
return transform_mat
def _bilinear_sampler(im, x, y, name='blinear_sampler'):
"""Perform bilinear sampling on im given list of x, y coordinates.
Implements the differentiable sampling mechanism with bilinear kernel
in https://arxiv.org/abs/1506.02025.
x,y are tensors specifying normalized coordinates [-1, 1] to be sampled on im.
For example, (-1, -1) in (x, y) corresponds to pixel location (0, 0) in im,
and (1, 1) in (x, y) corresponds to the bottom right pixel in im.
Args:
im: Batch of images with shape [B, h, w, channels].
x: Tensor of normalized x coordinates in [-1, 1], with shape [B, h, w, 1].
y: Tensor of normalized y coordinates in [-1, 1], with shape [B, h, w, 1].
name: Name scope for ops.
Returns:
Sampled image with shape [B, h, w, channels].
Principled mask with shape [B, h, w, 1], dtype:float32. A value of 1.0
in the mask indicates that the corresponding coordinate in the sampled
image is valid.
"""
with tf.variable_scope(name):
x = tf.reshape(x, [-1])
y = tf.reshape(y, [-1])
# Constants.
batch_size = tf.shape(im)[0]
_, height, width, channels = im.get_shape().as_list()
x = tf.to_float(x)
y = tf.to_float(y)
height_f = tf.cast(height, 'float32')
width_f = tf.cast(width, 'float32')
zero = tf.constant(0, dtype=tf.int32)
max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')
# Scale indices from [-1, 1] to [0, width - 1] or [0, height - 1].
x = (x + 1.0) * (width_f - 1.0) / 2.0
y = (y + 1.0) * (height_f - 1.0) / 2.0
# Compute the coordinates of the 4 pixels to sample from.
x0 = tf.cast(tf.floor(x), 'int32')
x1 = x0 + 1
y0 = tf.cast(tf.floor(y), 'int32')
y1 = y0 + 1
mask = tf.logical_and(
tf.logical_and(x0 >= zero, x1 <= max_x),
tf.logical_and(y0 >= zero, y1 <= max_y))
mask = tf.to_float(mask)
x0 = tf.clip_by_value(x0, zero, max_x)
x1 = tf.clip_by_value(x1, zero, max_x)
y0 = tf.clip_by_value(y0, zero, max_y)
y1 = tf.clip_by_value(y1, zero, max_y)
dim2 = width
dim1 = width * height
# Create base index.
base = tf.range(batch_size) * dim1
base = tf.reshape(base, [-1, 1])
base = tf.tile(base, [1, height * width])
base = tf.reshape(base, [-1])
base_y0 = base + y0 * dim2
base_y1 = base + y1 * dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# Use indices to lookup pixels in the flat image and restore channels dim.
im_flat = tf.reshape(im, tf.stack([-1, channels]))
im_flat = tf.to_float(im_flat)
pixel_a = tf.gather(im_flat, idx_a)
pixel_b = tf.gather(im_flat, idx_b)
pixel_c = tf.gather(im_flat, idx_c)
pixel_d = tf.gather(im_flat, idx_d)
x1_f = tf.to_float(x1)
y1_f = tf.to_float(y1)
# And finally calculate interpolated values.
wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1)
wb = tf.expand_dims((x1_f - x) * (1.0 - (y1_f - y)), 1)
wc = tf.expand_dims(((1.0 - (x1_f - x)) * (y1_f - y)), 1)
wd = tf.expand_dims(((1.0 - (x1_f - x)) * (1.0 - (y1_f - y))), 1)
output = tf.add_n([wa * pixel_a, wb * pixel_b, wc * pixel_c, wd * pixel_d])
output = tf.reshape(output, tf.stack([batch_size, height, width, channels]))
mask = tf.reshape(mask, tf.stack([batch_size, height, width, 1]))
return output, mask
def _spatial_transformer(img, coords):
"""A wrapper over binlinear_sampler(), taking absolute coords as input."""
img_height = tf.cast(tf.shape(img)[1], tf.float32)
img_width = tf.cast(tf.shape(img)[2], tf.float32)
px = coords[:, :, :, :1]
py = coords[:, :, :, 1:]
# Normalize coordinates to [-1, 1] to send to _bilinear_sampler.
px = px / (img_width - 1) * 2.0 - 1.0
py = py / (img_height - 1) * 2.0 - 1.0
output_img, mask = _bilinear_sampler(img, px, py)
return output_img, mask
def get_cloud(depth, intrinsics_inv, name=None): # pylint: disable=unused-argument
"""Convert depth map to 3D point cloud."""
with tf.name_scope(name):
dims = depth.shape.as_list()
batch_size, img_height, img_width = dims[0], dims[1], dims[2]
depth = tf.reshape(depth, [batch_size, 1, img_height * img_width])
grid = _meshgrid_abs(img_height, img_width)
grid = tf.tile(tf.expand_dims(grid, 0), [batch_size, 1, 1])
cam_coords = _pixel2cam(depth, grid, intrinsics_inv)
cam_coords = tf.transpose(cam_coords, [0, 2, 1])
cam_coords = tf.reshape(cam_coords, [batch_size, img_height, img_width, 3])
logging.info('depth -> cloud: %s', cam_coords)
return cam_coords