forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_blazeface.py
593 lines (512 loc) · 20.8 KB
/
test_blazeface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import requests
import logging
import imghdr
import pickle
import tarfile
from functools import partial
import cv2
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
from prettytable import PrettyTable
from PIL import Image, ImageDraw, ImageFont
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
__all__ = ["parser"]
BASE_INFERENCE_MODEL_DIR = os.path.expanduser("~/.insightface/ppmodels/")
BASE_DOWNLOAD_URL = "https://paddle-model-ecology.bj.bcebos.com/model/insight-face/{}.tar"
def parser(add_help=True):
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser(add_help=add_help)
parser.add_argument(
"--det_model",
type=str,
default="BlazeFace",
help="The detection model.")
parser.add_argument(
"--use_gpu",
type=str2bool,
default=True,
help="Whether use GPU to predict. Default by True.")
parser.add_argument(
"--enable_mkldnn",
type=str2bool,
default=True,
help="Whether use MKLDNN to predict, valid only when --use_gpu is False. Default by False."
)
parser.add_argument(
"--cpu_threads",
type=int,
default=1,
help="The num of threads with CPU, valid only when --use_gpu is False. Default by 1."
)
parser.add_argument(
"--input",
type=str,
help="The path or directory of image(s) or video to be predicted.")
parser.add_argument(
"--output", type=str, default="./output/", help="The directory of prediction result.")
parser.add_argument(
"--det_thresh",
type=float,
default=0.8,
help="The threshold of detection postprocess. Default by 0.8.")
return parser
def print_config(args):
args = vars(args)
table = PrettyTable(['Param', 'Value'])
for param in args:
table.add_row([param, args[param]])
width = len(str(table).split("\n")[0])
print("{}".format("-" * width))
print("PaddleFace".center(width))
print(table)
print("Powered by PaddlePaddle!".rjust(width))
print("{}".format("-" * width))
def download_with_progressbar(url, save_path):
"""Download from url with progressbar.
"""
if os.path.isfile(save_path):
os.remove(save_path)
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(save_path, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
save_path):
raise Exception(
f"Something went wrong while downloading model/image from {url}")
def check_model_file(model):
"""Check the model files exist and download and untar when no exist.
"""
model_map = {
"ArcFace": "arcface_iresnet50_v1.0_infer",
"BlazeFace": "blazeface_fpn_ssh_1000e_v1.0_infer",
"MobileFace": "mobileface_v1.0_infer"
}
if os.path.isdir(model):
model_file_path = os.path.join(model, "inference.pdmodel")
params_file_path = os.path.join(model, "inference.pdiparams")
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
raise Exception(
f"The specifed model directory error. The drectory must include 'inference.pdmodel' and 'inference.pdiparams'."
)
elif model in model_map:
storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
model)
url = BASE_DOWNLOAD_URL.format(model_map[model])
tar_file_name_list = [
"inference.pdiparams", "inference.pdiparams.info",
"inference.pdmodel"
]
model_file_path = storage_directory("inference.pdmodel")
params_file_path = storage_directory("inference.pdiparams")
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
tmp_path = storage_directory(url.split("/")[-1])
logging.info(f"Download {url} to {tmp_path}")
os.makedirs(storage_directory(), exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, "r") as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(storage_directory(filename), "wb") as f:
f.write(file.read())
os.remove(tmp_path)
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
raise Exception(
f"Something went wrong while downloading and unzip the model[{model}] files!"
)
else:
raise Exception(
f"The specifed model name error. Support 'BlazeFace' for detection. And support local directory that include model files ('inference.pdmodel' and 'inference.pdiparams')."
)
return model_file_path, params_file_path
def normalize_image(img, scale=None, mean=None, std=None, order='chw'):
if isinstance(scale, str):
scale = eval(scale)
scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
mean = np.array(mean).reshape(shape).astype('float32')
std = np.array(std).reshape(shape).astype('float32')
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage"
return (img.astype('float32') * scale - mean) / std
def to_CHW_image(img):
if isinstance(img, Image.Image):
img = np.array(img)
return img.transpose((2, 0, 1))
class ColorMap(object):
def __init__(self, num):
super().__init__()
self.get_color_map_list(num)
self.color_map = {}
self.ptr = 0
def __getitem__(self, key):
return self.color_map[key]
def update(self, keys):
for key in keys:
if key not in self.color_map:
i = self.ptr % len(self.color_list)
self.color_map[key] = self.color_list[i]
self.ptr += 1
def get_color_map_list(self, num_classes):
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
self.color_list = [
color_map[i:i + 3] for i in range(0, len(color_map), 3)
]
class ImageReader(object):
def __init__(self, inputs):
super().__init__()
self.idx = 0
if isinstance(inputs, np.ndarray):
self.image_list = [inputs]
else:
imgtype_list = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff'}
self.image_list = []
if os.path.isfile(inputs):
if imghdr.what(inputs) not in imgtype_list:
raise Exception(
f"Error type of input path, only support: {imgtype_list}"
)
self.image_list.append(inputs)
elif os.path.isdir(inputs):
tmp_file_list = os.listdir(inputs)
warn_tag = False
for file_name in tmp_file_list:
file_path = os.path.join(inputs, file_name)
if not os.path.isfile(file_path):
warn_tag = True
continue
if imghdr.what(file_path) in imgtype_list:
self.image_list.append(file_path)
else:
warn_tag = True
if warn_tag:
logging.warning(
f"The directory of input contine directory or not supported file type, only support: {imgtype_list}"
)
else:
raise Exception(
f"The file of input path not exist! Please check input: {inputs}"
)
def __iter__(self):
return self
def __next__(self):
if self.idx >= len(self.image_list):
raise StopIteration
data = self.image_list[self.idx]
if isinstance(data, np.ndarray):
self.idx += 1
return data, "tmp.png"
path = data
_, file_name = os.path.split(path)
img = cv2.imread(path)
if img is None:
logging.warning(f"Error in reading image: {path}! Ignored.")
self.idx += 1
return self.__next__()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.idx += 1
return img, file_name
def __len__(self):
return len(self.image_list)
class VideoReader(object):
def __init__(self, inputs):
super().__init__()
videotype_list = {"mp4"}
if os.path.splitext(inputs)[-1][1:] not in videotype_list:
raise Exception(
f"The input file is not supported, only support: {videotype_list}"
)
if not os.path.isfile(inputs):
raise Exception(
f"The file of input path not exist! Please check input: {inputs}"
)
self.capture = cv2.VideoCapture(inputs)
self.file_name = os.path.split(inputs)[-1]
def get_info(self):
info = {}
width = int(self.capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(self.capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
info["file_name"] = self.file_name
info["fps"] = 30
info["shape"] = (width, height)
info["fourcc"] = cv2.VideoWriter_fourcc(* 'mp4v')
return info
def __iter__(self):
return self
def __next__(self):
ret, frame = self.capture.read()
if not ret:
raise StopIteration
return frame, self.file_name
class ImageWriter(object):
def __init__(self, output_dir):
super().__init__()
if output_dir is None:
raise Exception(
"Please specify the directory of saving prediction results by --output."
)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
self.output_dir = output_dir
def write(self, image, file_name):
path = os.path.join(self.output_dir, file_name)
cv2.imwrite(path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
class VideoWriter(object):
def __init__(self, output_dir, video_info):
super().__init__()
if output_dir is None:
raise Exception(
"Please specify the directory of saving prediction results by --output."
)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_path = os.path.join(output_dir, video_info["file_name"])
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
self.writer = cv2.VideoWriter(output_path, video_info["fourcc"],
video_info["fps"], video_info["shape"])
def write(self, frame, file_name):
self.writer.write(frame)
def __del__(self):
if hasattr(self, "writer"):
self.writer.release()
class BasePredictor(object):
def __init__(self, predictor_config):
super().__init__()
self.predictor_config = predictor_config
self.predictor, self.input_names, self.output_names = self.load_predictor(
predictor_config["model_file"], predictor_config["params_file"])
def load_predictor(self, model_file, params_file):
config = Config(model_file, params_file)
if self.predictor_config["use_gpu"]:
config.enable_use_gpu(200, 0)
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(self.predictor_config[
"cpu_threads"])
if self.predictor_config["enable_mkldnn"]:
try:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
except Exception as e:
logging.error(
"The current environment does not support `mkldnn`, so disable mkldnn."
)
config.disable_glog_info()
config.enable_memory_optim()
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
input_names = predictor.get_input_names()
output_names = predictor.get_output_names()
return predictor, input_names, output_names
def preprocess(self):
raise NotImplementedError
def postprocess(self):
raise NotImplementedError
def predict(self, img):
raise NotImplementedError
class Detector(BasePredictor):
def __init__(self, det_config, predictor_config):
super().__init__(predictor_config)
self.det_config = det_config
self.target_size = self.det_config["target_size"]
self.thresh = self.det_config["thresh"]
def preprocess(self, img):
resize_h, resize_w = self.target_size
img_shape = img.shape
img_scale_x = resize_w / img_shape[1]
img_scale_y = resize_h / img_shape[0]
img = cv2.resize(
img, None, None, fx=img_scale_x, fy=img_scale_y, interpolation=1)
img = normalize_image(
img,
scale=1. / 255.,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
order='hwc')
img_info = {}
img_info["im_shape"] = np.array(
img.shape[:2], dtype=np.float32)[np.newaxis, :]
img_info["scale_factor"] = np.array(
[img_scale_y, img_scale_x], dtype=np.float32)[np.newaxis, :]
img = img.transpose((2, 0, 1)).copy()
img_info["image"] = img[np.newaxis, :, :, :]
return img_info
def postprocess(self, np_boxes):
expect_boxes = (np_boxes[:, 1] > self.thresh) & (np_boxes[:, 0] > -1)
return np_boxes[expect_boxes, :]
def predict(self, img):
inputs = self.preprocess(img)
for input_name in self.input_names:
input_tensor = self.predictor.get_input_handle(input_name)
input_tensor.copy_from_cpu(inputs[input_name])
self.predictor.run()
output_tensor = self.predictor.get_output_handle(self.output_names[0])
np_boxes = output_tensor.copy_to_cpu()
# boxes_num = self.detector.get_output_handle(self.detector_output_names[1])
# np_boxes_num = boxes_num.copy_to_cpu()
box_list = self.postprocess(np_boxes)
return box_list
class FaceDetector(object):
def __init__(self, args, print_info=True):
super().__init__()
if print_info:
print_config(args)
self.font_path = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
"SourceHanSansCN-Medium.otf")
self.args = args
predictor_config = {
"use_gpu": args.use_gpu,
"enable_mkldnn": args.enable_mkldnn,
"cpu_threads": args.cpu_threads
}
model_file_path, params_file_path = check_model_file(
args.det_model)
det_config = {"thresh": args.det_thresh, "target_size": [640, 640]}
predictor_config["model_file"] = model_file_path
predictor_config["params_file"] = params_file_path
self.det_predictor = Detector(det_config, predictor_config)
self.color_map = ColorMap(100)
def preprocess(self, img):
img = img.astype(np.float32, copy=False)
return img
def draw(self, img, box_list, labels):
self.color_map.update(labels)
im = Image.fromarray(img)
draw = ImageDraw.Draw(im)
for i, dt in enumerate(box_list):
bbox, score = dt[2:], dt[1]
label = labels[i]
color = tuple(self.color_map[label])
xmin, ymin, xmax, ymax = bbox
font_size = max(int((xmax - xmin) // 6), 10)
font = ImageFont.truetype(self.font_path, font_size)
text = "{} {:.4f}".format(label, score)
th = sum(font.getmetrics())
tw = font.getsize(text)[0]
start_y = max(0, ymin - th)
draw.rectangle(
[(xmin, start_y), (xmin + tw + 1, start_y + th)], fill=color)
draw.text(
(xmin + 1, start_y),
text,
fill=(255, 255, 255),
font=font,
anchor="la")
draw.rectangle(
[(xmin, ymin), (xmax, ymax)], width=2, outline=color)
return np.array(im)
def predict_np_img(self, img):
input_img = self.preprocess(img)
box_list = None
np_feature = None
if hasattr(self, "det_predictor"):
box_list = self.det_predictor.predict(input_img)
return box_list, np_feature
def init_reader_writer(self, input_data):
if isinstance(input_data, np.ndarray):
self.input_reader = ImageReader(input_data)
if hasattr(self, "det_predictor"):
self.output_writer = ImageWriter(self.args.output)
elif isinstance(input_data, str):
if input_data.endswith('mp4'):
self.input_reader = VideoReader(input_data)
info = self.input_reader.get_info()
self.output_writer = VideoWriter(self.args.output, info)
else:
self.input_reader = ImageReader(input_data)
if hasattr(self, "det_predictor"):
self.output_writer = ImageWriter(self.args.output)
else:
raise Exception(
f"The input data error. Only support path of image or video(.mp4) and dirctory that include images."
)
def predict(self, input_data, print_info=False):
"""Predict input_data.
Args:
input_data (str | NumPy.array): The path of image, or the derectory including images, or the image data in NumPy.array format.
print_info (bool, optional): Wheather to print the prediction results. Defaults to False.
Yields:
dict: {
"box_list": The prediction results of detection.
"features": The output of recognition.
"labels": The results of retrieval.
}
"""
self.init_reader_writer(input_data)
for img, file_name in self.input_reader:
if img is None:
logging.warning(f"Error in reading img {file_name}! Ignored.")
continue
box_list, np_feature = self.predict_np_img(img)
labels = ["face"] * len(box_list)
if box_list is not None:
result = self.draw(img, box_list, labels=labels)
self.output_writer.write(result, file_name)
if print_info:
logging.info(f"File: {file_name}, predict label(s): {labels}")
yield {
"box_list": box_list,
"features": np_feature,
"labels": labels
}
logging.info(f"Predict complete!")
# for CLI
def main(args=None):
logging.basicConfig(level=logging.INFO)
args = parser().parse_args()
predictor = FaceDetector(args)
res = predictor.predict(args.input, print_info=True)
for _ in res:
pass
if __name__ == "__main__":
main()